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FOREWORD 

This report was prepared under NASA Contract NAS 8-11494 and is 
one of a series intended to illustrate methods used for the design and analysis 
of space vehicle flight control systems. Below is a complete list of the reports 
in the series: 

Volume I 
Volume II 
Volume III 
Volume N 
Volume V 
Volume VI 
Volume VU 
Volume VIII 
Volume IX 
Volume X 
Volume XI 
Volume XII 
Volume XIII 
Volume XIV 
Volume XV 
Volume XVI 

Short Period Dynamics 
Trajectory Equations 
Linear Systems 
Nonlinear Systems 
Sensitivity Theory 
Stochastic Effects 
Attitude Control During Launch 
Rendezvous and Docking 
Optimization Methods 
Man in the Loop 
Component Dynamics 
Attitude Control in Space 
Adaptive Control 
Load Relief 
Elastic Body Equations 
Abort 

The work was conducted under the direction of Clyde D. Baker, 
Billy G. Davis and Fred W. Swift, Aero-Astro Dynamics Laboratory, George 
C . Marshall Space Flight Center. The General Dynamics Convair program was 

. conducted under the direction of Arthur L. Greensite. 
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1. INTRODUCTION 

This monograph discusses a variety of techniques available for the analysis of 
nonlinear control systems. While there is voluminous technical literature on this 
subject, it is, for the most part, of a theoretical nature beset with serious compu- 
tational difficulties in application. 

It is the primary purpose of this volume to consider those techniques which have 
proved most useful in the analysis of launch vehicle control systems. Well estab- 
lished techniques such as phase plane and describing function will be treated from 
first principles together with extensive application to problems of flight control. 
Various refinements described in the recent literature will be treated. 

A substantial portion of the monograph .deals with the Lyapunov theory of stabil- 
ity with emphasis on flight control applications. While this technique is still under 
active development, its broad features are well established, and it has proved use- 
ful in providing insight to previously obscure areas. 

The general theme of this volume is that of displaying the features of nonlinear 
flight control problems obtainable by judicious application of modern nonlinear con- 
trol theory, indicating both the power and potential of these methods together with a 
discussion of limitations and areas for future research. 





2. STATE OF THE ART 

Nonlinear control theory is a subject of active research at the present time. 
It is safe to say that this particular branch of control theory will never reach the 
definitive form which characterizes linear control. This is of course due to the 
fact that a nonlinear system is best defined in a negative sense; that is, a nonlinear 
system is merely one that is not linear. As a result, any effort whose purpose is 
to yield useful results, must sharply restrict the scope of the study. The most gen- 
eral theory available is that of Lyapunov. The analytical elegance of this concept 
is accompanied by serious difficulties in application due mainly to the broad gener- 
ality of the theory; in short, its chief virtue is also its fundamental handicap. Much 
progress has, however, been obtained by delineating specialized cases which of 
course yield specialized results. The best example in this area is the Lur’e tech- 
nique. There is no doubt that further results of theoretical and practical interest 
will be forthcoming in the future. 

Of the specialized methods presently available for pragmatic design, the most 
prominent are the phase plane and describing functions. Recent developments in 
the former have been concerned with improving the methods for constructing the 
phase plane portraits and extending their application. The generality of the describ- 
ing function technique has been extended by the introduction of the “Dual Input Des- 
cribing Function. ” 

The fundamental restriction in the phase plane method is the limitation tc sec- 
ond order systems, while the use of describing functions involves the assumption of 
low band pass properties of the system being analyzed. 

However, the formulation of any mathematical model involves some compromise 
with reality. Ultimately, the experience and judgment of the control engineer pro- 
vide the best guide for the proper application of these methods together with their 
proper interpretation. 

The principal value in the proper application of nonlinear techniques is the gen- 
eration of qualitative features of a control system which are essentially unaffected 
by inclusion of higher order dynamic effects and which thereby permit a rational 
interpretation of results obtained by computer simulation of a complex system. 
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3. RECOMMENDED PROCEDURES 

3.1 PHASE PLANE ANALYSIS 

The phase plane method is concerned with determining the general features 
of the solution of the differential equation 

ji + f (x, k) j, + g (x, 2) = 0 (1) 

The phase plane is a plot of x versus % and represents the trajectory of the 
system for any given set of initial conditions, x (0) and x (0). By classifying and 
studying the general form of these trajectories, one may draw conclusions on the 
system behavior without having to solve the equation for every set of initial condi- 
tions . While these methods are both elegant and powerful, their application to the 
analysis of nonlinear flight control problems is severely limited by three restrictions: 

1. The phase plane is applicable only to second order systems. 

2. Only systems that are not externally excited may be studied. 

3. The range of admissable nonlinearities is limited. 

Each of these limitations can to some extent be circumvented. Extensions 
of the method to a phase space of order higher than two have been developed by Ku, (l) 
Grayson and Mishkin (2) and Kuba and Kazda, (3) among others. There is however a 
substantial increase in complexity both at the computational level and in physical in- 
sight. As a result, these methods have not been used extensively in practical prob- 
lems . 

The second limitation may be partially removed to the extent that step and 
ramp inputs may be treated. To see this, let Eq. (1) be written as 

% + f (x, x) x + g (x, jr) = a + bt (2) 

where a and b are constants and t > 0. 

Making the change of variable, z = x -a -bt, Eq. (2) becomes 

Z + f(z + b, z + a + bt)(i + b) + z = 0 (3) 

This equation is autonomous* if either b = 0 (step function alone) or f (x, k) = f (2). 

*i.e . , t does not appear explicitly. 
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The third limitation is inherent in the form of the differential equation, 
(1); namely, only signal-dependent nonlinearitiee are allowed. The coefficients of 
x and x may not contain the independent variable explicitly. 

In spite of the rather limited range of systems thus amenable to analysis, 
the phase plane method is valuable in that it yields qualitative results for systems 
of higher order and is exact for those cases which are adequately described by sec- 
ond order equations. In the latter case, a wealth of insight into phenomena which 
cannot be predicted even approximately by the linear theory is obtained, and ihis 
often provides a framework for predicting and explaining in qualitative fashion those 
control systems in which are included higher order dynamic effects. 

The phase plane method is based on three essential concepts: 

1. The phase plane representation. 

2. Singular points. 

3. Limit cycles. 

These will be discussed in the following sections. 

3.1.1 Phase Portrait 

By defining a new variable, y, Eq. (1) may be written as 

(4) 
9 = -f (x, y) Y - g (x9 Y) 

Actually, the method to be discussed is applicable to the slightly more 
general system described by 

Ii = P (x, y) 

i = Q lx, Y) 
(5) 

It is easy to eliminate t completely from this set of equations; viz. 

%=“‘“’ p lx* Y) (6) 

A variety of specialized techniques have been developed for determining, 
graphically, the phase plane trajectories of systems represented by Eq. (1) or 
Eq. (6). They differ mainly in the specific form of the equation treated. Since 
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these methods are dealt with at length in standard t.e~ts(~), only two of these will 
be described briefly. 

3.1.1.1 Graphical Methods 

A variety of graphical methods are available to.solve Eq. (6) depending on 
the specific form of this equation. Perhaps the simplest technique is the so-called 
“Isocline Method” which is applicable if P (x, y) = y in Eq. (6). This method is 
perhaps best explained using a specific example. Consider the equation* 

2 -0.2 (1 -x2) jc + x = 0 (7) 

This may be written in the form 

dy 
dx= 

0.2 (1 -x2) y -x 
Y 

(8) 

where y = x. A series of lines are drawn for different constant values of g = m. 

These are shown in Fig. 1 for m = 0, 60.5, f 1. Now let A be a point on the solution 
curve. (This may represent the initial state x (0) , y (0). ) The slope at point A is 
equal to 1 since it lies on the curve for m = 1. Point B on the system trajectory may 
be determined as follows. We note first of all that the trajectory proceeds in a 
clockwise direction, as may be readily verified by considering the relation between 
x and y. Now since B is on the m = 0.5 curve, its slope equals 0.5, and the average 
slope between A and B is therefore 0.75. Drawing a line of slope = 0.75 through 
point A consequently determines point B. Proceeding in this fashion, the entire tra- 
jectory is formed as shown in Fig. 1. 

The accuracy of the method can be made as high as desired by using a large 
number of isoclines (lines of constant slope). 

Another method which is somewhat more direct proceeds by constructing 
the system trajectory by means of small circular arcs. This approach, known as 
the “Delta Method, ” is applicable to equations of the form 

ji +cp(k,x) = 0 (9) 

By properly defining a variable 6, we may write this as 

%+6+x=0 (10) 

*The knowledgeable reader will recognize this as the van der Pol equation, the 
workhorse of nonlinear theory. 
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m=O 

/ m=1 m=” m = -1 m = -0.5 m- 0 m30.5 

[ 

Figure 1. Graphical Construction of Phase Plane Trajectory Using 
the Isocline Method: 



Again using y = $, we may write Eq. (10) as 

dy x+6 -= -- 
dx Y 

(11) 

where 

6 = <p@, Y) -x (12) 

For small changes in the variables x and y, 6 remains essentially constant 
and in this case, Eq. (11) may be integrated to yield 

y2 + (x + 6)2 = R2 (13) 

where R2 is a constant. This is the equation of a circle of radius R whose center 
is at x = - 6, y = 0. Thus, for a suitably small increment, the system trajectory 
is a circular arc of the form shown by Eq. (13). The construction proceeds as 
follows. The initial point is located at x (0) , y (o), as shown in Fig. 2. These values 
of x and y determine the value of 6 which thereby locates the center of the circular 
arc and determines the radius R automatically. A short circular arc is then drawn 
to locate the new point, xl and yl. The procedure is then repeated until the entire 
trajectory is formed. Fig. 3 illustrates the trajectory obtained for the system 

ji + 25 (1 + 0.1 x2) x = 0 

with the initial conditions 

x = -1.8 

2 = y = -1.6 

A typical circular arc construction is shown for the point x = 3, y = 0 for 
which the value of 6 equals 2. ‘7. 

Remark: Graphical methods, by themselves , are of limited usefulness in estab- 
lishing the essential properties of the nonlinear equation as represented 
by Eq. (5) or Eq. (6). Such questions as stability, boundedness of solu- 
tions , etc. are determined in rigorous and elegant fashion by invoking 
the concepts of singular points and limit cycles which are discussed in 
Sections 3.1.2 and 3.1.3. A powerful technique for piecewise linear 
systems is treated in Section 3.1.4. As a preliminary to this, the phase 
plane solutions for second order linear systems are developed in the 
next section. 
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Figure 2. Basic Construction of the Delta Method 

4ty 

Figure 3. Complete Trajectory Constructed Using the Delta Method 
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3.1.1.2 Direct Solution of Equations 

In certain cases, the trajectory of the system in the phase plane may be 
obtained by integrating Eq. (6) directly. For example, consider the equation 

2 2 
Y + 2rwoj + 0 c= 0 E 

0 0 c (14) 

E =A tS 0 
C 

= 0 t< 0 

which represents a linear system with a step input. 

Writing 

X=C-A 

7 = oat 

this may be put in the form 

x” + 2[x’ + x = 0 (15) 

where primes denote differentiation with respect to 7. Letting y = x ’ and dividing 
through by y, Eq. (15) may be expressed as 

dy 
x =- 

23Y +x 
Y 

W-2 

If g = 0, then this integrates immediately to 

x2 + y2 = c2 (17) 

which is the equation of a circle centered at the origin; the constant c is determined 
by the initial conditions. 

If c = 0 and the sign in front of the x term in Eq. (15) were minus instead 
of plus, then (15) would integrate to 

y2 - x2 = c2 WV 

or 

x2 - y2 = c2 (19) 
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depending on the value ,of the initial conditions. These curves, which sre rectangu- 
lar hyperbolas, are shown in Figs. 4 and 5. 

Turning now to the general case, we consider the equations 

%=y 

~+2~wy+w2x=o 

which may be expressed as 

zk?L= _ (25OY + w2x) 
dx Y 

after eliminating t. Performing a change of variable 

Y =vx 

Eq. (21) becomes 

[ 

2 
v + 2cw+ + dx = - 1 xdv 

This may now be integrated by separation of variables to yield 

Y2 + arwxy + w21i2 = c 
1 

e”(x* Y) 

when 13 1 < 1. 

For the case of 1 c 1 > 1, Eq. (23) integrates to 

(Y-X1x)x1 = c2 v-x,x)A2 

A1=-bPd~ 

x2 = - cw+w G 

cm 

(21) 

(22) 

(23) 

(24) 

(25) 
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Figure 4. Rectangular Hyperbola of Eq. (18) 
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Figure 5. Rectangular Hyperbola of Eq. (19) 
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Typical trajectories corresponding to Eq. (24)) the underdamped case, are 
shown in Figs. 6 and 7 for 0 = 1 and < = 0.3 and 0.5, respectively. From Eq. 
(21), observe that the slope changes sign at y = - x/2,5. This line is also shown 
in the figure. 

The trajectories corresponding to Eq. (25), the overdamped case, are 
shown in Figs. 8andSwherew = land5 = 1.4 and 2.0, respectively. The phase 
portrait is characterized by principal directions and the final portion of any trajec- 
tory is along a straight line through the origin. The principal directions are deter- 
mined as follows. Suppose that it is -possible to choose a constant, A, such that y/x 
= X is a portion of the trajectory. For this to be true, we find from Eq. (21) that 
the following condition must be satisfied 

A2 + 2cwx + Lo2 = 0 

This is in fact the characteristic equation of the system. In other words, when X 
is a root of the system characteristic equation, then there is a solution in the phase 
plane given by y = Xx. There are two such paths, corresponding to X1 and X2. 
These paths are straight lines through the origin and they define principal direc- 
tions of the phase portrait. Just as the time behavior of the overdamped second 
order system is primarily determined, initially, by the larger of the two roots, 
and finally by the smaller one, so a typical trajectory in the phase plane starts 
parallel to the principal direction with the larger slope (say X2) and ends parallel 
to the direction with the smaller slope (A 1). These features of the phase portrait 
for overdamped systems are evident in the trajectories shown in Figs. 8 and 9. 

The phase portraits of Eqs. (24) and (25) may be further simplified by an 
appropriate change of variable. Consider first Eq. (24). If new variables are 
defined by 

u =(dqx 

V = y + yox 

then (24) may be expressed as 

u2 + v2 = c 
1 
e’p(u’ 9 

(b(u,v) = 
F- 

- --l v 

1 - t2 (3 U 

with a change to polar coordimites 

u= p CO8 8 

v=psine 

14 



Figure 6. Phase Portrait of the Damped Second-Order System 
# + 2 cj, + x = 0; 3 = 0.3 

a 
7 I IllhI I 

. . . . _-. Y-I I I x I If-a51 I\ I I 

t i i.A i’ I’M 

Figure 7. Phase Portrait of the Damped Second-Order System 
ii + 2Cf + x = 0; c= 0.5 

15 



II Nlhlll 

Figure 8. Phase Portrait of the Damped Second-Order System 
ji + 2C% + x = 0; c= 1.4 

Figure 9. Phase Portrait of the Damped Second-Order System 
x + 2C% +x = 0; t= 2.0 
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and this becomes 

p = C3ee 

which is the equation of a logarithmic spiral. Turning to Eq. (25), if one adopts 
the coordinate transformation 

u=y-xx 
2 

v = y - x,x 

then it is found that Eq. (25) reduces to 

A /A 
v=c4u 2 1 

which is the equation of a family of parabolic-like curves centered on the v axis. 

Remark : The importance of the results derived in this section lies not in their 
neatness and elegance but rather in the fact that they are basic to the 
study of the piecewise linear systems considered in Section 3.1.4. 
What is significant is that the phase portraits are distinctive, depending 
upon whether the system is underdamped, overdamped, or undamped. 
These qualitative characteristics, taken in conjunction with properties 
related to singular points and limit cycles, provide one of the most 
valuable tools available for predicting the qualitative features of non- 
linear phenomena. These topics are taken up next. 

3.1.2 Singular Points 

The slope given by Eq. (6) becomes indeterminate when simultaneously 

P(x,y) = 0 

Q(x,y) = 0 

The point at which this occurs is termed a “singular point. ” An analysis of the 
nature of singular points is important from the point of view of equilibrium states 
of the system; whether trajectories converge to or diverge from this state, or in 
some cases, yielding information on the existence of closed paths in the phase plane 
(periodic phenomena). 

If a singular point exists at x = a and y = b, then a Taylor expansion of 
Eq. (5) about this point yields 
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k= a1 (x - a) + a2 (y - b) + higher order terms 

JT= bl (x - a) + b2 $ - b) + higher order terms 

In a sufficiently small region about the singular point, the higher order 
terms are negligible and the system behaves linearly, viz. 

j, = al (x - a) + a2 (y -b) CW 

9 = bl (x - a) + b2 (y-b) WW 

For this case, the characteristic equation of the system is found to be 

2 
8 - (al + b2) s + (a1 b2 - a2bl) = 0 (28) 

The nature of the roots of this equation determines the behavior of the 
system trajectories in the phase plane. Denoting these roots by X1 and X2, six 
cases may be distinguished. 

I. A1 and X2 both real and negative. This case is termed a stable node and all 
trajectories converge to the singular point as shown in Fig. 10a. 

II. X1 and X2 are complex conjugate with negative real part. This condition gives 
rise to a stable focus with all trajectories converging to the singular point in 
the manner shown in Fig lob. 

m. A1 and x2 are pure imaginary. For this case, the motion is simple harmonic 
with the oscillation amplitude dependent on the initial conditions. The trajec- 
tories are closed paths around the singular point which in this case is termed 
a center. The phase plane portrait is shown in Fig. 10~. 

IV. X1 and A2 both real and positive. This gives rise to an unstable node with all 
trajectories diverging from the singular point as shown in Fig. 10d. 

V. Xi and X2 are complex conjugate with positive real part. This case results in 
oscillatory motion but with divergent amplitude; all trajectories leave the singu- 
lar point as shown in Fig. 10e. The singular point here is termed an unetable 
focus. 

VI. A1 and X2 both real with one positive and one negative. The singular point here 
is termed a saddle point. The trajectories are depicted in Fig. 10f. 

The type of singular point encountered is essentially dependent on the coef- 
ficients in Eq. (28). If we write 

P =ab -ab 12 21 
V = - (a1 + b2) 

18 



a. Stable Node - The roots are both 
real and negative 

b. Stable Focus - The roots are complex 
conjugates with negative 
real parts 

c. Center - .The roots are complex conju- 
gates with zero real parts 

d. Unstable Node - The roots are both 
real and positive 

-x 

e. Unstable Focus - Roots are complex 
conjugates with positive 
real parts 

Y 

f. Saddle Point - The roots are both real 
and of opposite sign 

Figure 10. Typical Phase Plane Trajectories for Singular Points 
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Then a concise tabulation of the singular points is as depicted in Fig. 11, where the 
line of demarcation between the nodes and foci is given by the parabola 

2 
V = 4p 

The actual equations of the phase plane trajectories are obtained by substi- 
tuting Eqs. (27) for P (x, y) and Q(x, y) in Eq. (5) and writing the resulting set in 
the form of Eq. (6) after eliminating t. Eq. (6) then has a solution in closed form 
in the manner discussed in Section 3.1.1.2. Note that while the results obtained 
there were valid for the whole phase plane, the case discussed here is limited to 
the immediate vicinity of the singular point because of the linearizing process in- 
volved in deriving Eqs. (27). 

3.1.3 Limit Cycles 

The determination of the nature of the singular points together with the use 
of the graphical methods described previously is sufficient to indicate the general 
nature of the system trajectories. However, for purposes of stability analysis, a 
knowledge of the possible existence of limit cycles is essential. A limit cycle is an 
isolated closed path in the phase plane. The limit cycle may be stable or unstable 
depending on whether the paths in the neighborhood converge to the limit cycle or 
diverge away from it. From a practical point of view, only the former is important. 
The two types of limit cycles are illustrated in Fig. 12. 

Unfortunately, there is no completely general method for determining the 
limit cycles of any given system. The available methods are summarized below in 
four theorems which are stated without proof. * 

Theorem I: If outside a circle Cl in the phase plane all paths are converging (the 
radial distance to the point moving along the path is decreasing, the radial distance 
being measured to the center of the circle, Cl), and inside a smaller circle C2, with 
the same center as Cl, the paths are diverging, then a limit cycle must exist within 
the region bounded by Cl and C2. 

Theorem II (Bendixson’s First Theorem): With P (x, y) and Q (x, ) defined as in 
Eq. (5)) then no limit cycle can exist within any region ,m which 
change sign. (t! ) 

+ $ does not 

Theorem III (Rendixson’s Second Theorem): If a path stays inside a finite region, 
D, and does not approach a singular point, then it must either be a limit cycle or 
approach a limit cycle asyinptotically. 

Theorem IV (Poincare’): Within any limit cycle, the number of node, focus, and 
center types of singularity must exceed the number of saddle points by one. 

* The proofs may be found in Ref. 5. 
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Figure 11 Singular Point8 as a Function of p and v 
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9 
I I 

STABLE SINGULAR POINT PNSTABLE 
IJMIT CYCLE 

STABLE LIMIT CYCLE 
I 

Figure 12. Types of Limit Cycles 

Remark: Most systems of interest, which can be put in the form (5)) may be 
analyzed by invoking the concepts of singular points and limit cycles, 
together with appropriate graphical methods. The form of the phase 
portrait thus determined yields valuable information relating to sta- 
bility, points of equilibrium, boundedness or periodicity of the solu- 
tion, etc. These Phenomena often cannot be predicted by linearized 
techniques alone. The application of these ideas will be illustrated 
by two simple examples. 

Example 1: We consider the van der Pol equation 

. . 2 x - F (1 -x)k +x = 0 

Writing this in the form 

j, = y f P(x, y) 

j, = c (I-x2)y-x = Q&Y) 

it is readily found that a singular point exists at x = y = 0 and that this singular 
point represents an unstable node. Furthermore 
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SE+ a&= 
ax ay 

F (1 - x2) 

By Theorem II, a limit cycle exists since this quantity changes sign at x = fl. The 
phase portrait for this system is shown in Fig. 13. It is worthy of note that this 
limit cycle is reached whatever the form of the initial conditions. Linear systems 
do not display this phenomenon. 

Example 2: The system described by 

f + +ph2x3 = 0 

closely approximates the motion of a pendulum with large deflection angles. Writ- 
ing this as 

i = y = P(x, y) 

- h2x2) x q Q(x, y) 

we see that there are three singular points as follows: 

a. A center at x = y = 0 

b. A saddle at x = 00/h, y = 0 

c. Asaddleatx=- o o/h’ Y=o 

This information is sufficient to construct the phase portrait shown in Fig. 14. 
Note that depending on the initial conditions, there is either a stable limit cycle or 
a divergent motion. This again is in contrast with linear systems where the stabil- 
ity is not affected by the initial conditions. 

Various other cases of phase plane analysis are treated in the references. 
The work of Davis @) is especially noteworthy in its analysis of some complex situ- 
ations where the nonlinearities are analytic and differentiable. Many cases in flight 
control systems are characterized by piecewise linear conditions; viz. ; relays, sat- 
uration, dead zone, hysteresis, etc. In other cases, the nonlinearity may be approx- 
imated by piecewise linear segments. The analysis of this type of system is par- 
ticularly simple and elegant, yielding considerable information on the properties of 
the motion with comparatively little effort. This approach, which is due to Kalman, (7) 

is described next. 
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Y 

Figure 13. Phase Portrait for Example 1 

Y 

Figure 14. Phase Portrait for Example 2 
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3.1.4 Piecewise Linear Systems 

For a linear system, a determination of the nature of the critical point is 
sufficient to characterize the complete behavior of the system for all time. This 
problem was discussed in Section 3.1.1.2. Fig. 10 depicted the types of phase 
plane trajectories which characterize each type of singular point. In Section 3.1.2, 
these trajectories were said to indicate the form of the phase portrait in the vicinity 
of the singular point since the relevant equation was linearized about this point. 
However, if the system is linear in the entire region, then these paths are valid 
in the entire region. These considerations suggest that the phase plane be decom- 
posed into regions, in each of which, the system is linear, then combining the var- 
ious paths in order to completely describe the motion. At all times, the qualitative 

The aim is to obtain aspects of the system response will be kept in the foreground. 
the greatest possible degree of insight into the problem with a minimum of labor. 
While exact numerical results may be obtained with some additional effort, this is 
not our primary objective at the moment. As will be seen, a wealth of information 
on properties of the system motion will be derived with little computational effort. 

The approach will be described by applying the method to several problems 
in the field of flight control. A few preliminary remarks are in order. For any 
region in the phase plane where the system is linear, the motion is governed by 

‘e + a&d + u2 e= u2e* (29) 

where 8* represents an external forcing function. For phase plane analysis, this 
may be either a step or ramp function, or zero. For definiteness, we will consider 
only the step input, in which case, the change of variable 

x = e* -8 

converts Eq. (29) to 

Putting this in the standard form 

fr=yap 

i= -2@y-w2x = Q 

(30) 

(31) 

we find that the singular point is at x = y = 0, and is characterized by 

25 



Stable Node: c ’ 1, w> 0 

Stable Focus: 0<1:<1, o>o 

Center’: 5 = 0, a2 > 0 

Unstable Node: c < -1, w > 0 

Unstable Focus : -1 < c < 0, 0 > 0 

(32) 

Saddle: 2 
w < 1 

In the examples to follow, it will be more convenient to work with the 
8 - i$ plane rather than the x-y plane. The foregoing discussion indicates that all 
that is required is a translation of the origin. Consequently, one may work with 
Eq. (29) directly in the 8 - 8 plane if one considers that in this case the singular 
point is at 8 = 8*, 6 = 0. 

We now consider the problem of a simplified pitch plane vehicle control 
system incorporating various types of nonlinearities. 

Example 3: The system to be analyzed is shown in Fig. 15, with the control loop as 
depicted in Fig. 16. The symbols used have the following meaning: 

I = 

KA = 

%= 

a = 
C 

a = 
or 

L = 
o! 

S P 

T, = 

t = 

bc = 

6 = 

8 = 

eE = 

9 = 
C 

moment of inertia of vehicle, slug-ft2 

servoamplifier gain, N. D. 

rate gyro gain, set 

control thrust moment arm, ft 

aerodynamic load moment arm, ft 

aerodynamic load, lb/rad 

Laplace operator, set -1 

control thrust, lb 

time, set 

engine command, deg 

engine angle, deg 

pitch angle, deg 

error signal, deg 

input signal, deg 
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T 
C 

Figure 15. Vehicle Geometry for Example 3 

8 
C 

-I- 

Figure 16. Control Loop for Example 3 
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Tc $/I 
-2 

cc, = = control engine effectiveness parameter, set 

La I@/1 
-2 

Pa = = aerodynamic effectiveness parameter, 6ec 

The equations defining the motion are 
. . 
8 = PC b+ c1,e 

% 
= KA [ec - (KRs+l)B‘l 

8 =A t>O 
C 

= 0 t co 

The nonlinearity is a saturation characterized by* 

6 =B % ’ %M 

= 6 C --BCM ‘< bc “< 6 
CM 

= -B iTic < -6 
CM 

(33) 

(34) 

(35) 

Dividing the ic - bc phase plane into three regions as shown in Fig. 17, 
we may write the relevant equations as follows: 

(35) 

Region @ : i + pcKAKRdc + (pcKA-cc(y)6 C 
* 

= (~cKA-11cy)62 

Here 
KA(Cc,A + pcB) 

%t 

UC KA - p,) 

6; = - 
KA (paA - PC B, 

% 

*I3 CM E saturation limit of bc 

(37) 

(38) 

(40) 
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3 

PATH III 

kc 
2 

PATH II 

Figure 17. Phase Portrait for Example 3 

The 6: ‘s are the singular points for their respective regions. Note that 
a singular point need not be located inside its own region. When indeed it is located 
outside its own region it is known as a virtual singular point. 

Let us assume that the system parameters are such that 15; and 15; are 
saddle points while 6; is a stable focus. This situation exists when the parameters 
A, B, KA, KR, pea Pa, 
ye chosen appropriately. 

are all p:SitiVe, ( k KA - pa) > 0, and the KA and KR 
Then 62 is located in region @ as are also 6T and 

63. Typical trajectories for each region then have the form shown in Fig. 17. The 
initial conditions are 6, = KAA, 6, = 0; i. e. , the trajectories all start on the 
positive bc axis. Now if KA A > 6~~9 then the system diverges; a typical form of 
the trajectory is as depicted by path I. If KA A C 6CM, but with the magnitude of 
the step command such that path II is followed, then on entering region @ the 
trajectory follows a divergent path, and the system is unstable. With the magnitude 
of the step input, A, reduced still further, a path such as III is followed and a point 
of stable equilibrium is reached with & taking a steady state value equal to 6;. 
There are thus only two possible types of response; one of which results in a stable 
equilibrium, and the other is an unbounded divergence. For given values of the 
system parameters, this is solely a function of the magnitude of the step input. For 
the case discussed herein (aerodynamically unstable vehicle), catastrophic instabil- 
ity is a potential problem. 
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In the case of an aerodynamically stable vehicle, the parameter p, is 
negative and the singular points, 6: and 65 are now centers. These will still be 
located withIn region @ and the paths for regions @ and @ will be as shown 
in Fig. 18. Depending on the magnitude of the step input, the paths may or may 
not enter region (5J . In all events, an equilibrium condition will be reached 
with 6 = 6; (which is now positive since p, is assumed negative). 

Example 4: Taking again the case of the pitch plane autopilot, we investigate the 
influence of dead zone in the position gyro. The control loop is shown in Fig. 19a 
and the characteristics of the nonlinearity are depicted in Fig 19b. The relevant 
equations are : 

. . 
e- CL~ 0 = cc, 6 

6= KA(Oc - ‘k” - f) 

i - e- 0 
0 

lel > f-Jo 

= 0 -e. 28 ‘< 8 
0 

8, is again taken to be a step input of magnitude, A. We may write therefore 

when lfJ 1 > (Jo, while 

if 18 1 < 8 , where 
0 

ey = 
/J~KA(A+~~) 

(pcKA-pa!) 

e; = 
CccKAA 

% 
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Figure 18. Phase Portrait for Example 3 (aerodynamically stable case) 



a. CONTROL LOOP FOR EXAMPLE 4 

-0 
0 

0. 0 

8 - 

b. 

Figure 19. Characteristics of Nonlinear Element for Example 4 
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The phase plane is again divided into three regions as shown in Fig. 20. 
e: is the critical point for regions @ and @ while e,* is the critical point for 
region 2 . 0 When the quantity ( p, KA - pLcr ) is positive and the system gains 
are aPProPrfately chosen, ef represents a stable focus, and 0; is a saddle point. 
The trajectory starts at the origin ( 0 = 8 = 0 initially), and on reaching the 
region boundary, takes a path corresponding to the stable focus in region @ . 
The critical point represents a point of stable equilibrium. Note that in thepres- 
ent case, with positive step input of magnitude A, 0 is never negative. 

Example 5: As a final illustration, consider the system shown in Fig. 21. The 
approach here is as follows. Damping must be provided to make the system stable 
for small errors; however, the response for large errors should be as fast as pos- 
sible . This is accomplished by operating on the damping rather than the system 
gain. The damping, in fact, is made to depend on the system error rather than the 
output rate. The governing equations are as follows. 

6 = KAtlE-f6 

. . 
0 - Pa 0 = ~~6 

0, =e -0 C 

In the 0, - 8, plane we have 

for IeEl< 0 

and 

for I eE I > 8 0 

where %-YA 

&KA-L(~ 
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0 3 0 1 

0 

Figure 20. Phase Portrait for Example 4 

We have again used a step input of magnitude, A. The location of the 
singular point is the same for all three regions as shown in Fig. 22. Assuming 
that the quantity ( ccc KA - p, ) is positive, the singular point for regions @ and 
@ is a center, while for region @ the singular point is either a stable focus or 
a stable node, depending on the system gain. 
(3: is located in region @ as shown, 

For a sufficiently large step input, 
and motion starts at the point 8E = A, 

4E = 0. In regions @ and @ the trajectories are ellipses with center 6$, 
while .in regiqn @ the trajectory is a spiral with the same center. There is. a 
point of unstable equilibrium at 6E = 0, 8E = - 8,. A slight disturbance will 
cause the motion to follow the Fajectory of path I. It is obvious that for smaller 
values of step input such that 8E is located In region @ , the motion will reach 
a point of stable equilibrium. 
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Figure 21. Control Loop of Example 5 

0 1 

-0 0 

Figure 22. Phase Portrait for Example 5 
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3.2 DESCRIBING FUNCTIONS 

Because of the fact that linear methods of analysis are so powerful and 
universally applicable, it is natural to seek tc ‘linearize” the nonlinear systems 
encountered in control analysis. One well established technique involves the deri- 
vation of the (linear) equations characterizing small perturbations about eteady- 
state conditions. When the motions are not small, this approach is invalid, The 
method of “describing functions; ” developed in this country by Kochenburger(8), 
may be used to analyze control systems incorporating one nonlinearity if the follow- 
ing conditions are satisfied: 

a. The input to the> nonlinear element is sinusoidal. 

b. The output of the nonlinear element is periodic and of the same fundamental 
bequency as the input signal. 

c. Only the fundamental of the output wave need be considered in frequency res- 
ponse analysis. 

d. The nonlinear element is not time varying. 

Under these conditions, the method yields an “equivalent linear gain” for 
the nonlinear element. Using frequency response methods, one is then able to 
determine the stability properties of the system, the frequency and amplitude of 
limit cycles* if they exist, and whether these limit cycles are stable or unstable. 

In this section, no attempt will be made to develop the method in rigor or 
depth, since this topic is treated extensively in standard texts(‘). We will instead 
emphasize the basic principles and fundamental assumptions, and develop some 
very general forms for the describing function. Some recent developments such as 
the dual input describing function (DIDF) and methods for multiple nonlinearities 
will be discussed. Potential applications to launch vehicle control problems will 
be stressed. 

3.2.1 Definition of the Describing Function 

The conventional definition of a transfer function of a linear dynamic 
element is based on the response of the element to an input signal of the form 

X = R, sin ot (41) 

The output is then 
y' = RLsin(ot+q) (42) 

*A limit cycle is an oscillation of fixed amplitude and frequency. 
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where in general %’ is different from B. and 9 is the angle of phase lag. The ampli- 
tude ratio, I+&., and phase lag, cp , are functions of the input frequency but not of 
the input amplitude. If the dynamic element is not linear, then the response to a 
sinusoidal input is periodic but not sinusoidal. In seeking to define an equivalent 
transfer function for a nonlinear element, one is led to consider the frequency 
spectrum of the output and td assume that only the first harmonic is significant. 

Let the input to the nonlinear element be given by Eq. (41). Then the output 
has the property 

Y (t + ‘0 = Y (t) (43) 

2n where T = - 0 - 
The output y (t) may be expanded in a Fourier series as follows: 

Bn = -$ j@;;sin (y) dt 
CY 

and cx is any constant. 

We note also 

2snt An cos T + BIlein 2nnt = 
T cnsin y +‘p, 

2 nnt = Cnsin y CO8 Q n + cn COB 2 nnt - SinQ T n 

Equating coefficients of like sine and cosine terms, we obtain 

Bn = cn COB Q, 

An = cn t3inQn 
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solving this for Cn and 'pn gives 

c, = 

-1 An 
Qn = tan 

B, 

Hence, Eq. 44 may be written in the form 

Y (t) = 2 Ao +f cn6in(F +Qn) 

n=l 

Or 

AO 
co 

Y (t) = 7 + c 
c cos 

n=l 
n y -5 +Q 

n > 

If we put 

01 = -L 

T = 2L 

Then we have 

An = $ ly (t) cos (T) dt 

L 

Bn = i J 
-L 

We see, thtirefore, that if y (t) is an even function [i. e. , y (t) = y (-t) 1, then 

B, = 0 

and 

An = t f y (t) co8 (y) dt 
0 

(47) 

(48) 

(49) 

(50) 
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while if y(t) is an odd function [i.e., y (-t) = -y (t)), then 

A =0 
n 

and 

B, = $ fy (t) sin (T) dt 
0 

For the special case of 

y(wt) = y(wt + 2n) 

We have 

Ao o) c CD 
y(wt) =2 + 

n=l 
Ancosnwt + c B, sin nwt 

n=l 

where 
a+2n 

A ’ =- 
n n J y ( ot) cos not d (wt) 

o! 

CY + 2n 
Bn = ; / y (at) sinnot d (wt) 

01 

If y (at) = y (-ot), then 

Bn = 0 

An =+ J y (tot) cos nut d (ot) 
0 

If Y(-wt) = -y(wt) 

A, = 0 

B, .= + 
Y (wt) sin not d (wt) 

0 

(51) 

(52) 

(53) 

(54) 

(55) 

(55) 
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We now define the Describing Function as the complex ratio 

c1 
GD =R, 

ejQI 

This may be expressed in the equivalent form 

c1 B1 
A 

1 
“D=r(,““1=” +j% 

= ge ‘Ro) + j be Wo) 

(57) 

(53) 

As is obvious from the definition, the only significant quantity at the output 
of the nonlinear element is taken to be the fundamental harmonic of the Fourier spec- 
trum. In this way, an equivalent linear transfer function (the describing function) is 
obtained. The validity of this approximation is strongly dependent on the low band- 
pass properties of the system considered. This condition is fulfilled in most systems 
of engineering interest and is, in fact, more accurate the higher the order of the sys- 
tem. 

3.2.2 Describing Functions for Various Nonlinear Elements 

In this section, the describing function for various common types of non- 
linearities will be developed. Following this, a very general describing function 
will be derived which is applicable to a wide class of piecewise linear elements. 
The section will conclude with an extensive tabulation of describing functions of the 
type most generally encountered in practice. 

Combined Saturation and Dead Zone. This nonlinearity is illustrated in 
Fig. 23a, and the output waveform is shown in Fig. 23b. We have 

y (wt) = 0 0 < wt < wt 1 

= R, (sin wt - sin wtl) Wtl < at < mt2 

= R. (sin cot2 - sinwt$ “t2 < wt < ; 

where 

sinwt = 1 D/R andsin ot 
0 2 = “/R. 
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--e-m-- -(S-D) 

a. NONLINEAR ELEMENT 

S-D ---- 

wt 

wt ot 
1 2 

-(S-D) --------------w-- 

b. OUTPUT WAVEFORM 

Figure 23. Combined Dead Zone and Saturation 
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Therefore t 
4 Bl = ;; I” 

5 

Ro’ ( sin ot - sin utl) sin wt d (wt) 

*2 
4 +- J 
lr t2 

Ro(sinut2- sin utl) sin wt d (wt) 

2 R. 
[ sin2 wt 

2 
sin2ot 

1 =- wt -at1 + - lr 2 2 2 1 
and 

Al = 0 

Hence 

B1 GD=~=; 
sin 2 ut2 sin 2 utl 

-atI + - 2 2 1 
0 

The following special cases may be noted: 

For Saturation only 

wt =‘o 
1 

so that 
sin 2 ot 2 2 1 

And for Dead Zone only 

so that sin 2 tit1 
2 1 

(59) 

(60) 
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The describing function is shown graphically in Fig. 24. 

Coulomb Friction. This case is shown in Fig. 25. We see that 

y (wt) = - K ,:, = - KsgnR 

or 

Hence 

so that 

y(wt) = -K R>O 

=K R<O 

v2 
Bl = ; 

J- 
4K (-K)sinwtd(ot) = -R 

0 

Al = 0 

0 0 

Exponential Nonlinearity. In this case (Fig. 26), the nonlinearity is defined by: 

y = 1x*-l Ix 

n > -2 

Since y is an odd function, 

An = 0 

a 
B1 =+ 

J (R. sin ut)* sin wt d (wt) 
0 

4 RE 
“(2 

=- 
n / (sin ut)n+l d (wt) 

0 
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2R; ry 
= 

I/- v [ 1 n+3 rz 
where r ( ) = Gamma Function. Hence 

(63) 

Relay with Dead Zone and Hysteresis. The essential elements of this nonlinearity 
are depicted in Fig. 27. Here we find that 

n- w/3 
A0 = 5 f 

s-w/3 
d (wt) -; d(wt) = 0 

off V+WCY 

A1 = ; 
- OB 
cosotd(wt)- 5 

2n- o/3 

J COB ot d (ot) 
wa a+ wa 

2K = -- 
a 

( sin ocy - sin oj?I ) 

K 
B, - / 

K r --r =- sin wt d ( w I n J WiiJ sin ut d (wt) 
wa B+WoL 

2K = -;;- (CO8 wet + CO8 o/3, 

where 

A+h -- 
sin wo! - 2 R. 

A-h sin wfl = 2~ 
0 
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Figure 24. Describing Function for Saturation and Dead Zone 



a. NONLINEAR ELEMENT 

b. INPUT AND OUTPUT WAVEFORMS 

Figure 25. Coulomb Friction 
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wt 

a. NONLINEAR ELEMENT 

b. INPUT AND OUTPUT WAVEFORMS 

Figure 26. Exponential Nonlinearity 
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A- h 

2 2 

a. NONLINEAR ELEMENT 

R @t) 

b. INPUT AND OUTPUT WAVEFORMS 

Figure 27. Relay with Dead Zone and Hysteresis 
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Now 

and 

c1 
= 

J 
A; + B”1 

= 4K cos 
n 

Ql = tan -1 A1 

B1 

= 

Putting 

we find 

G 
cl 

D =R LQl 
0 

=zo cos(y/-+ (#- 8) (64) 

Figs. 28 through 30 depict this describing function graphically. In these figures, a 

normalized ordinate is used; viz. , GA = AG 
K D’ 

This reduces to 

a. No hysteresis (h = 0) 

GD = z. ,/q 
(65) 
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Figure 28. Relay Describing Function 
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b. No dead zone (A = 0) 

G = 
D /-a 

0 

6 = sgl h 
( ) 2 R. 

c. No hysteresis or dead zone ( h = A = 0) 

4K 
GD =- 

l7R 
0 

Hysteresis. The following relations are evident from Fig. 31 

y (wt) = R. sin wt - $ 

CR -5 
0 2 

= R, sin wt + $ 

= - ( ) R 2” -- 
0 

77 

-ii- 
< ot -=c fl- wt 1 

n - wt 1 
< wt < $ 

2 < at < 2n - wt 1 

= Rosinwt-: 2T - utl < wt < 2Tr 

where 

(67) 

sin ut 
R. - a 

= - 1 
RO 
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a l----l 

l--T- wt 1 

y(wt) 

1 

2n 

fdt 

f 

Figure 31. Hysteresis 
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- 

Therefore 

RO Al = - 
n 

A! 
2 

J 
sinwtcoswtd(wt)-g 

0 

n 
z 

/ 
cos ot d (wt) 

0 

R n-at 

+A 
1 n- wt 

1 

71 / 
cos ut d (wt) -& 

s 
cos wt d (wt) 

2 z 
R 

+L 
n / 

a 
sin wtcos mtd(ut) +2n 

/ 
cos wt. d (wt) 

n- wt 7r- wt 
1 1 

R 
0 

2lr- at1 2n - wt a -- cos wtld (ut) 
n / 

cos at d (ot) + 2n 

37l 
/ 
3n - - 

2 2 

R 2n 2ll 
+o cos wt d ( wt) 

77 / 
sinotcoswtd(wt) -5 

z&r -ut / n - OJt 
1 1 

a a =- 

[ R, 
- 2 

n 
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f tr 

RO B =y- 1 

R 
+o 

n 

R 
+o 

7l 

R 
0 mm 

n 

R 
+o 

n 

2 

J sin2 wtd (wt) - & 
P 

sinwtd(ot) 

0 0 

P - wt 1 
sinwtd(ot) - & 

n-6+ 

/ 
sin wt d (cot) 

f 
2 

n 
2 

3n 377 
T 2 

J sin 
2 a - wtd (ot) + G ‘sinwtd(ot) 

n - wt. / 
1 TI- utl 

2n- wt 
J 

1 a 
2n- cot1 

sinwtd(wt) +G sin ot d (wt) 

a? 
J 
3n 

2 T- 
2n 

J 
271 

sin2 ot d (ot) - & 
I- 

sin wt d (wt) 

2 7r- a1 h- utl 

I- 
R 

0 =- L 17 a 
n 2 

+ut + l-- 1 0 I RO 

co9 Wt 1 
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II 

A0 = : J I Rosinwt - $1 d(wt) + i /-/ii;- ; 1 d(wt) 

3T 
2 

+L J 1 R, sin wt + 
n 

; 1 d(wt) - 5 f”i;ott %) d (wt) 

a- wt 1 
3T 
z 

2n 
+L 

n 
Rosinwt-t 

I 
d(wt) = 0 

and we have 

G 
D= 

AIF7 &l A1 

RO / 
ii- 

1 = - 
II 

[ 

$ (k - 2)Z + (t +utl+sinutlcosutl 2 ‘/Ll-‘fi 

0 
)I 

(f-58) 

where 

B = 
R, ( f + utl + sin at1 cos wt 1 
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A General Describing Function for Piecewise Linear Elements. Most of the describ- 
ing functions derived thus far are special cases of a more general form(lO) shown in 
Fig. 32. Applying Eqs. (53)) (54)) and (58) to this case, we find 

nl 
MO) = a~ I 

Ro (- 8, +202 +8 3 - e4 - e5) 
0 

RO +y (sin28 1 -2sin28 2-sin283+sin284+sin285) 

+2a(- cos 8, + 2 cos 8 2 - COB 8,) + 2d (CO6 6, - COS 8,) I (69) 

+nZ 
?lR I R. (e5 

RO 
-e3)+? (sin2e3-sin2e5) 

0 

+ 2k2 (COS 8 5 - cos e3) 
1 

‘I 

3 +- 
TR I ~~(~-2e~)+R~sin28~-4k~cose~ 

0 I 

and 
nl b(Ro)= x 

[ 
RO 2 (COS2el+COS2e3 -COS2e4 

0 

- cos 2 e5) + 2a 
- 

(sin 8, sin 13~) + 2d (sin 8 - sin 3 e4) 1 
+“” RO 

RR 2 (- COS 2 +COS 2 
e3 e5) +2k2 (Sin 8, 

- Sin 
0 e3) 1 

where k =Dc-Fe 
2 D-F 

k3 
= b- ?f- 

n3 

(70) 
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- 

el = sin -1 a 

Ro e2 
= sh-l $ 6, = sh-1 k 

0 0 

e4 
= sh-1 $ e 

5 
= sh-1 f 

0 RO 

Notice that the 8,‘s have been defined such that they all lie in the first 
quadrant. A variety of special cases may be deduced from Eqs. (69) and (70). An 
extensive tabulation of these is given in Table 1, which is adapted from Ref. 10. 

A General Polynomial Type Nonlinearity. The input-output characteristic of this 
type of element may be expressed by the equation 

y = cn x” + c n-l 
xn-2 Ix 1 + c 

n-2 
Jp-2 -I- c 

n-3 xn-4 1 x 1 + ‘ . . . . . . . 

. ..+c2x Ix 1 +clx 

There is no loss of generality in assuming that n is odd. The absolute value 
signs are used to ensure that y is an odd function of x. Proceeding in a manner com- 
pletely analogous to that used in deriving Eq. (63), we find 
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Table 1. The Describing Functions for Twenty-three Common Nonlinear 

1 

Nonli 

Characteristic 

E 

r 

nl 

h n2 D . . . . . . . . . 

d a e 

Elements 
:ar devices with memory 

Describing function 

nl 
g(Ro) = x I 

~~ ( V- 8, + e3 - e4 - 8,) 
0 

RO + 2 (sin28 1 -sin2e3+sin2t34+sin28 
5) 

- 2a (COB e1 + COB 8,) + 2d (~06 e3 - cos 8 
4) J 

n2 
+ aR ~~ e5 + 8,) + 

RO 2(sin2e3-sin2e5 
0 I 

+ 2k2 (COB 8 - 5 CO8 e3) 1 
RO 
j- (c0s2e1+c0f32e3-c0t32e4 

- cos 2 e5) 

+ 2a (~it-18, -sine5) +2dtsine 3 -sine4) 
I 

(~06 2 8 5 - COB 2 8,) 

+ 2k2 (sin 8 
5 - sin 8,) 

61 

la - 



Table 1. The Describing Functions for Twenty-three Common Nonlinear 
Elements, Contd 

Characteristic Describing function 

Nonlinear devices with memory 

? g(Ro) = nR Ro(77-e1+e3-e4-e5) 
0 

R 
+* (sin28 1-sin2e3+sh2e4+sin2e5) 

- 2a (~06 8, + cos 8,) + 2d (COS e3 - cos e4) 
I 

2D -T (COS 8 5 - cos e3) 
0 

MO’ = no [ > (co6 2 
nl 

8, + cos 2 e3 - cos 2 8 4 
0 

- cos 2 e5) 

+2a(sin8 - Sin e5) 1 + 2d (Sin 8 - Sin e4) 3 I 

+ 2D ---(sin 8 - sin 77R 3 8,) 
0 
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3 

Table 1. The Describing Functions for Twenty-three Common Nonlinear 
Elements, Contd 

Nonlinear devices with memory . 

Characteristic 

T n2 

nl 

. . . . . . . : I . . . . . . . . . . . . d: **. : : . . : : . . : : . 
3c ai+ 

Describing: function 

g(Ro) 
nl 

= no R, (- 8, + 2 8, + 8, - 8 4- e5) 
0 

RO + 2 (sin 2 8 - 
1 

2 sin 2 8 - sin 2 
2 

8 
3 

+ sin 2 8, + sin 2 8,) 

+ 2a (- cos 81 + 2 cos 8 2 - cos 8,) 

+ 2d (CO8 8 3 - COS e4) 
I 

+% I R. @5 
RO 

TR -e3)+2(sin2e3-s~2e5) 
0 

+ 2k2 (COS 8 4M - COS 
8,) 1 + - 

5 ITR cos 8 2 0 

nl 
b(Ro) = x 

RO 
7 (COS 2 8, + cos 2 8, - cos 2 e4 

0 

- cos 2 8,) 

+ 2a (sin 8 1 
- sin 05) + 2d (sin O3 - sin e4) 1 

n2 
1 

RO + - - 
TR O2 

(-cos 2 8, + cos 2 cl,, 

+ 2k2 (sin 8, - sin e3) 
I 
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Table 1. The Describing Functions for Twenty-three Common Nonlinear 
Elements, Contd 

Nonlinear devices with memory 

Characteristic 

M 

D 

. . . . . . . . . . . . . . . r . . . . . . . : . . . . . . . . , , 
Ai 

. . :: . . :: : . . 
c ati’ 

Describing function 

nl 
g(Ro) =nR R, ( -8, + 2 e2 + 8 3- e4 - 6,) 

0 

+$ (sin2el-2sin2e2 

- sin 2 e3 + sin 2 e4 + sin 2 e5) 

+ 2a (-c~~ 8, + 2 cos 8, - cos e5) + 2d (~08 8, 

cos e4) 1 2D 4M 
- 

+ nR (~08 e3 - ~08 e5) + nR ~0s e2 
0 0 

bcRo) nl = ny I 5 2 (~08 2 8, + cos 2 e3 - cos 2 e4 
0 

- cos 2 e5) - + 2a (sin 8, sin e5) + 2d (sin e3 

2D - sin e4) I + - - (sin 8 sin e5) VR 3 
0 
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Table 1. The Describing Functions for Twenty-three Common Nonlinear 
Elements, Contd 

Nonlinear devices with memory -____---- 

Characteristic 

17 

Describing function 

nl 
limo) =aR 

I 
R, t-8, f 8, + 8 3 - e4) 

0 

RO +- ( sin 2 e1 - sin 2 8 2 
2 

- sin 2 e3 + sin 2 e4)+ 2a (- co6 e1 + cos e2) 

E- ll5 I 
a 

-I- 2d (CO8 8 - COS e4) I 2M 
3 + --$- @OS e2 + COS e3) 

0 

b(Ro) 
nl RO 

= sR I 2 (CO6 2 81 - CO6 2 8, + CO6 2 e3 
0 

- cos 2 e4) + 2a (831 8, - sin e2) + 2d (sin e3 

-sine4) 1 2M -- nR (sin 8 2 - sin e3) 
0 

f3(Ro) =s tcos e1 + cos 8,) 

0 

b(Ro) = =$ (Sin 81 - Sin e3) 
0 
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Characteristic Describing function 

nl 
gtRo) = a~ 

0 
~~ (28, + 8 3- e5) +?(-2 ; sin 2e 2 

Table 1. The Describing Functions for Twenty-three Common Nonlinear 
Elements, Contd 

Nonlinear devices with memory 

- sin 2 e3 + sin 2 e5) + 2a (2 cos 8 - 2 cos 8 3 
n2 RO 

- cos 8,) I 1 +z Ro(e5-e3)+psin283 
0 

- sin 2 8,) + 2k2 (COS 8, - cos e3) I 
+n3 

VR 
R. (T- 2 8,) +Ro sin2 8, 

0 

1 

- 4k3 CO6 8, I 

(COS e3 - cos 2 e5) + 2a (sin e3 

RO 2 (-cos 2 8, + sin 8,) 1 +nZ 7TR 0 

+ cos 2 e5) + 2k2 (sin 8, - sin e3) I 

66 



8 

Table 1. The Describing Functions for Twenty-three Common Nonlinear 
Elements, Contd 

Nonlinear devices with memory 

Describing function 

nl 
:(Ro) = - VR R. (2 e2 83 85) RO + - + 2 -2 sin 2 t32 

0 

- sin 2 8, + sin 2 e5) + 2a ( 2 cos 8 

- sin 2 e5) + 2k2 ( - cos e3 + cos 8,) 
I 

4M 
+ - cos 8 BRO 2 

-2a (sin 8, + cos 2 8 3 

+ cos 2 e5) + 2k2 (sin 8 - 
5 

sin 8 ) 
.3 

6’7 



9 

10 

Table 1. The Describing Functions for Twenty-three Common Nonlinear 
Elements, Contd 

Nonlinear devices with memory 

Characteristic 

M 

D 

. . . . . . . . . . . . . . . . ;: : : : .: r- : : : : : : a e 

Describing function 

Wo) 
nl 

= no I ~~~ 2 8, + a3 - e5) 
RO 

+p-2 6in2e2 
0 

- sin 2 8, + sin 2 e5) + 2a (2 cos e2 - cos fJ3 

2D 
cos e5) 1 + (COS 8 - cos e5) + 

4M 
- - 

llR 3 
-COS 8 

0 rRo 2 

nl 3(-y = z 
1 

RO 2 (~06 2 e3 - cos 2 e,) - 2a(si.n 8, 
0 

+ sin e5) 1 2D +- (sine - sin e5) 
nRO 3 

n1 
g@,) = nR R, ( e2 + e3) + 

RO 2 (-sin 2 8, 
0 

L 

- sin 2 e3) + 2a (~08 8, - cos e3) 

2M + --- (~06 e2 + cos e3) , 
0 

‘PO, nl =aR > (~06 2 8, - cos 2 e2) - 2a (sin e2 
0 

+ sin e3) 1 2M 
+- llR (sine - sin e2) 

3 
0 

R. > b 
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Table 1. The Describing Functions for Twenty-three Common Nwlinear 
Elements, Contd 

Nonlinear devices with memory 

Characteristic 

P 

t 
M 

I 
b 

. . . . . n1 . 
* : . - : 

t 

c : . . . . . 
a e 

Describing function 

:(R~) = F cos 8, 
0 

‘(Ro) = + sin 8 2 
0 

:(Ro) 
nl =z 

0 1 

RO 
Ro(n+e2-e5)+2 (-6in2e3 

+ sin 2 e5) - 2a (COB 8, + COB 8,) 
I 

n2 +- Ro(e5-e3) +z w2e3 IrR 0 I 

RO 

- sin 2 e5) + 2k2 (COB e5 - cos f!13) 
I 

nl 
I 

R 
)@,) =nR * (COB 2 e3 - COB 2 8,) 

0 

- 2a (sin e3 + sin e5) 
1 

n2 
I 

R 
+- 

7rR 
$ (- COB 2 8, + COB 2 e5) o 

+ 2k2(6in e5 - Sin 8,) 
I 
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Table 1. The Describing Functions for Twenty-three Common Nonlinear 

Characteristic 

*. . * . . . . . . 
c : 

P 

1; 
a e 

Describing function 

Elements, Contd 
Nonlinear devices with memory 

nl RO 
MO) = nR Ro(g +83-85)+-pSin283 

0 

+ sin 2 e5) - 2a (COB 8, + cos e5) 1 
+ 2D - 

TR 
lcos 8 - cos e5) 3 

0 

(CO6 2 e3 - COB 2 e5) - 2a (Sin e3 

0 

3 8,) - sin 

2nl 8 
g(Ro) = 7 $+ 3. 2 

sin 2 e3 
4 

-2nl 
b(Ro) = y--- ~06~ 8 3 
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15 

16 

Table 1. The Describing Functions for Twenty-three Common Nonlinear 
Elements, Contd 

Nonlinear devices with memory 

Characteristic 

7- ab 

I 
“lp 

Describing function 

:(Ro) nl = RR 2 Ro( - 81 + 8,) + R, (SitI 2 81 
0 

- sin 2 e2+ 4a (COB 8 - 2 cos 8,) 1 
n3 + x R, ( r- 2 e2) + R. sin 2 e2 

0 [ 

- 4k3 co9 8, 1 
‘(Ro) = 0 

nl :(Ro) = x 2 R. t-e1 + e2) + R. (sin 2 e1 
0 

- sin 2 e2) f 4a (COB e2 - cos el) 
1 

+g co6 8 
vRO 2 
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Table 1. The Describing Functions for Twenty-three Common Nonlinear 
Elements, Contd 

Nonlinear devices with memory 

Characteristic 

M 
a 

# 

Describing function 

n3 3(Ro, = ny 1 R. (a- 2 el) +R, sin 2 
0 

81 

-4k3 cos e1 
I 

‘cRo’ = 0 

:pio) = ‘$ COB e1 
0 

"Ro, = 0 

nl ;flo) = -;r (2 e2 - sin 2 e2) 

n3 +--& Ro(v-2e2)+Rosin2e2 I 0 

- 4k3 cos 8, 1 

eo’ = 0 
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22 

23 

Table 1. The Describing Functions for Twenty-three Comm6n Nonlinear 
Elements, Contd 

Nonlinear devices with memory 

Characteristic 

7- 
! n3 

b 

. 

f 

L 

M 
V 

Describing function 

fmo) = 
nl 

(2e2 
4M 

7 -6in2e2) +- 
IlR 

cos 8 2 
0 

b(Ro) = 0 

n3 
g(Ro) = x 

0 1 
R, ( n- 2 8) + R, sin 2 e2 

-4b CO8 $ 
1 

b’Ro’ = 0 

4M 
g ( Ro) = n3 + a~ 

0 

b’Ro’ = 0 

g@o) = $ 
0 

Wo’ = 0 
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Remark: All of the describing functions encountered thus far are independent of 
frequency. Occasionally, a situation arises in which the describing func- 
tion is dependent on input frequency. This may occur, for example, when 
there is a velocity saturation. The analysis in this case is extremely com- 
plex and the use of a computer is mandatory. 
type are discussed by Kochenburger(“). 

Various problems of this 

3.2.3 Application to Stability Analysis 

The describing functions, as developed in the previous section, may be 
used to study the existence of self-sustained oscillations (limit cycles) in feedback 
control systems. It is important to bear in mind the major assumptions on which 
this analysis is based; namely, 

a. The system is autonomous (i. e. , unforced and time invariant). 

b. The nonlinearity is frequency independent. 

c. The linear transfer function of the system contains sufficient low pass filtering 
to warrant excluding from consideration all harmonics of the nonlinear element 
output other than the fundamental. 

For purposes of analysis, the sys tern under consideration may be depicted 
as shown in Fig. 33 with r = 0. We assume that the input to the nonlinearity may be 
represented as 

x = R. sin wt 

We now seek to determine the conditions which are sufficient to ensure 
that this oscillation be maintained indefinitely. If the system under discussion were 
linear (GD = 1 in Fig. 33)) then a sufficient condition for the existence of sustained 
oscillations would be 

In the present case, this condition becomes 

KGH = - 
1 

GD ‘Ro) 

Furthermore, in the linear case, the simplified Nyquist criterion* states 
that if the critical point, -l/K is to the left of the G(j w) H (j w) locus when the latter 

*The simplified Nyquist criterion is valid when all the poles of the open-loop trans- 
fer function lie in the left-hand plane. 
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Figure 33. Use of Describing Function in Stability Analysis 

is traced out in the direction of increasing frequencies, then the system is stable. 
In the nonlinear case, when the describing function is used to represfnt the nonlin- 
earity, the above statement remains valid if -h is replaced by - G) . 

D o 
1 

To examine the implication of these concepts, we plot the KGH and - GD(R,) 
curves in the Nyquist plane, a typical case being as shown in Fig. 34. Here, the 
arrows on KGH and -* indicate the direction of increasing o and R, respective- 
ly. For a sufficiently low open-loop gain (the K1 GH curve) there is no intersection 
of the curves, and no limit cycles exist. For a higher open-loop gain (the K2 GH 
curve) a point of intersection is located at ~3, and a limit cycle is indicated having 
an amplitude and ikequency corresponding to the values of R. and w at the point ~3. 
It remains to determine whether cycle is stable or unstable. We note that 
when the value of R. is such that - is to the right of ~3, then instability is in- 
dicated by the simplified Nyquist criterion, causing R. to increase and 
moving the point - GD ~ 

(nk 
to the left. When R. is such that the point - 

to the left of p3, then t e indicates stability. 
decreases, moving the point - It is obvious therefore that p3 
is a stable point of equilibrium and that p2 is a stable limit cycle. 
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GDiRo) 

K2GH KlGH 

Figure 34. Nyquist Curves and Describing Function 

The amplitude and frequency of this limit cycle is independent of the ini- 
tial conditions, a phenomenon not exhibited by linear systems. When there is a phase 
lag associated with the describing function, the - dm curve may appear as in 
Fig. 35. This particular representation is typical of a relay having hysteresis and 
dead zone. It may be shown that the Nyquist criterion still applies even though the 
critical point is not on the negative real axis. Thus, if R. is such that the operating 
point is to the right of ~3, Ithe system is unstable, R. increases, and the operating 
point moves along the - GD(&-,) curve towards p2. Reasoning as before, we find that 
p3 represents a point of stable equilibrium; i.e. , a stable limit cycle. 

Fig. 36 indicates a situation with increased dead zone. *The result is that 
there is no intersection of the curves and no limit cycle can exist. 

Another possibility is shown in Fig. 37 where the curves intersect at two 
points. To determine the stable limit cycle we may reason as follows. If R. is such 
that the operating point on - &a is located between p1 and ~3, the system is stable, 
R. decreases, and the operating point moves to pl. The motion is stable and there 
is no limit cycle. If the operating point on the - &) curve is between p2 and p3, 
the motion is unstable, R. increases and the operating point moves to p3. Also, if 
the operating point is to the left of p3, the motion is stable, and the decreasing R, 
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Im 

KGH 

WRe 

Figure 35. Nyquist Curve and Describing Function with Memory -- 
Limit Cycle Shown 

n 

L Re 

Figure 36. Nyquist Curve and Describing Function with Memory -- 
No Limit Cycle 
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Im 

KGH 

Figure 37. Nyquist Curve and Describing Function with Memory -- 
Two Limit Cycles Shown 
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causes the operating point to move toward p3. Thus, p3 represents a stable limit 
cycle and p2 is an unstable limit cycle. Summariz$g, we find that any disturbance 
that cause* an R, whose operating point on the - GD(R,) curve is to the left of p2 
will result in a motion which damps out completely, while larger amplitudes of Ro 
will result in a limit cycle of frequency and amplitude determined by point p3. 

3.2.4 Multiple Nonlinearities 

The analyses of the previous sections have been based on the assumption 
that there is only one nonlinearity in the system. For multiple nonlinearities , var- 
ious extensions of the describing function technique have been described in the liter- 
ature. (13) - (15) p er h aps the most straightforward approach is to develop a composite 
describing function when the nonlinear elements are in series. This problem has been 
studied by Gronner. (15) If the nonlinearities are separated by linear dynamic ele- 
ments, the analysis is much more difficult. Even for relatively simple systems, 
some sort of computer assist is required. 

While a detailed computational approach is tedious, the broad outlines of 
the method of analysis are relatively simple and afford a degree of insight to the re- 
sults generated by computer. We will here describe a technique due to Gran and 
Rimer(12) h’ h ’ w lc is applicable to multiple nonlinearities which can be put in the form 
shown in Figs. 38 or 39. Certain restrictions must be imposed on the linear ele- 
ments, Gi(s), for the describing function method to be applicable. In Fig. 38, there 
is no restriction as long as the input signal, x, is sinusoidal, which will be the case 
if the system is low pass. For the form of Fig. (39)) however, the output of the 
linear dynamic elements must be sinusoidal. Therefore, all the Gi(s) must be low 
pass. 

The method to be described is valid for various modifications or combina- 
tions of Figs. 3 8 and 39. The essential condition that must be satisfied is that the 
input to the nonlinear elements be sinusoidal; this requirement serves to indicate 
which parts of the system must be low pass. 

Consider now the system of Fig. 38. The input, x, is assumed to be of 
the form 

X = Rosinwt 

Consequently, the input to the i th nonlinearity is 

R. IGi(j o) lain (ti + 
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Figure 38. Nonlinear Elements in Parallel 

Figure 39. Nonlinear Elements in Series 
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The describing function of the i 
th nonlinearity, denoted by G 0) 

a function of the amplitude, Ro, and the input frequency, o . Ii 
(Ro, o) , is therefore 

f these describing func- 
tions are used to replace the nonlinearities in the system block diagram, the result 
is a linear system. 

In Fig. 39, the input to the first nonlinearity is 

R. IGI( sin(wt + /G1 ciw) 1 

The input to the second nonlinearity becomes 

R, IG&iW) 1 lG2(jW) I GE’ CR,, w) sin (wt + h + IGz) 

and this is used to determine the describing function for the second nonlinearity, 
Gg’ (Ro, w). This procedure is continued until all the describing functions are for- 
mulated. Although these are in general quite complex, they depend only on R, and o. 
For either form, a set of values of R. and o will determine a linear system whose 
operating gain and pole-zero locations are determined for these values of R. and w. 

The characteristic equation for the entire system is now written as 

1 + K. (R o) w) 
iil L-s + Zi ‘Ro. w)l 

= 

ifl [s + Pi(Ros ~3 

0 (79) 

For a specified value of R, and 0, a pole-zero configuration is determined 
along with an operating gain, Ko. A limit cycle is indicated at that point on the root 
locus where the latter intersects the imaginary axis. However, a change in R, (or w) 
also changes the pole-zero configuration as well as the operating gain. Therefore, in 
general, a separate root locus is required for every value of R, and w. The general 
procedure is as follows. 

a. Select a value of R. and w (say $) and 01). Determine the root locus and oper- 
ating gain, K&l) . 

b. Select a new value of R, (say RA2)), and with the same value of wl. A new pole- 
zero configuration and a new root locus result along with a new value for opera- 
ting gain, @’ . 

C. On a separate diagram, connect all the operating points, K@ , resulting in an 
“input-dependent locus. ” The limit cycle amplitude and frequency are determin- 
ed by the intersection of this locus with the j w axis. If the frequency at crossover 
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and the original assumed frequency, wl, do not correspond, then a new 
input-dependent 10cu.s~’ for a different o , must be determined and the process 
continued until the assumed frequency and crossover frequency correspond. 
This is the predicted limit cycle. 

The above procedure simplifies materially for the case of Fig. 38 since the pole- 
zero locations and operating gains do not depend on irequency. 

In any event, the “input-dependent locus” generated by this method may 
be interpreted as follows: 

a. If the locus remains in the right-hand plane, the system is unstable; if it re- 
mains in the left-hand plane, the system is stable. 

b. If an increasing R, causes the locus to cross the imaginary axis from the right- 
hand to the left-hand plane, a stable limit cycle exists. 

c. If increasing R. causes the locus to cross the imaginary axis from the left-hand 
to the right-hand plane, there is an unstable limit cycle. 

The proof of the above assertions follows the conventional arguments for root locus 
stability. As an example of the above approach, we consider the following. 

Example 6: The block diagram of the system to be investigated is shown in Fig. 40. 
This may be rearranged to the form shown in Fig. 41, which is of the parallel form 
of Fig. 38. Now by putting x = Ro sin ot, the open-loop transfer function becomes 

K,, (RJ 

(s + 1)2 6 + $1 

where 

100 G;) (R ) 
K. ‘Ro’ = 

10 GE) ’ (Ro) + 1 

1 100 GE) (R o ) + 1 
-= 
7 10 (Ro) -I- GE’ 1 
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#) (R ) = 3 
D o 

sin--’ b - 
R 

RO 

Gt2) (R ) = ?% 
D o “R, 

nl 
E slope of saturation nonlinearity. 

In this example 

b = 1 

M1 
= 1000 

M2 = 10 

Figure 40. Control loop for Example 6. 
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- a+10 -"2 1 
-f- 

Figure 41. Equivalent Control Loop for Example 6 

A typical root locus for a particular value of R. is shown in Fig. 42, while 
Fig. 43 depicts the “input-dependent locus” for this problem. The pole locations for 
specified values of R. are summarized in the following table. 

Point on Locus R Pole Location 
0 KO 

1 0.1 -10.00 78 

0.4 -10.00 250 

0.5 -10.00 396 

1.0 -9.96 781 

4. 0 -9.7.0 960 

6 100.0 -6.05 879 

7 1000.0 -2.01 177 

For R, = 0, the point on the input-dependent locus corresponds to the 
double pole at -1, and for Roe=, the locus returns to this same point. 
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/ I 
/ 
‘OPERATING POINT,’ Ko( Ro) 

-Re 

Im 

Figure 42. Root Locus for Example S 

Im Im 

5 5 

ARROWS INDICATE DIRECTION OF ARROWS INDICATE DIRECTION OF 
POLE MOTION FOR INCREASING POLE MOTION FOR INCREASING 
ERROR AMPLITUDE, R. ERROR AMPLITUDE, R. 

Re Re 

Figure 43. Gain Locus for Example 6 
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In accordance with the criteria listed above, the point 2 in Fig. 43 corre- 
sponds to an unstable limit cycle while point 7 corresponds to a stable limit cycle. 
The latter occurs at the values, R, = 1000 and w = 3.6 rad/sec. 

3.2.5 Dual Input Describing Function (DIDF) 

The method is based on consideration of two sinusoids being applied at the 
input of a nonlinear element. In certain cases a high frequency low amplitude signal 
(dither) is introduced externally to modify the characteristics of the nonlinearity. 
This is the so-called “dynamic lubrication” method, which. often has the effect of 
linearizing the nonlinear element and tends to stabilize the system. 

In the present case, however, the high frequency signal is taken to be the 
system limit cycle while the slowly varying signal is derived from input commands 
to the system. The concept of a DIDF was first introduced by West(42) and is dis- 
cussed in a standard text by Gibson( 43). While useful in certain cases, this approach 
is extremely tedious and lengthy. An extension of the method by Gelbe and Vander 
Velde(16) affords a crucial simplification in that a limit cycling system is treated as 
a control system whose signal transmission properties can be readily derived under 
certain mild restrictions on the input command signal. The discussion will be 
limited to feedback control systems of the form shown in Fig. 44. 

If a system which exhibits a limit cycle in the unforced state is subjected 
to a slowly varying input, the output follows this input, on the average, to within 
some following error. A typical situation is shown in Fig. 45. Over any limit cycle 
period, the system error may be approximately modeled as a sinusoid plus d-c bias. 
The sinusoid is associated with the limit cycle and the d-c bias with the error. This 
suggests that the input to the nonlinear element be taken as 

x=R 
1 

+ R. sin Wet (73) 

Making the same assumptions as for conventional describing functions, the output 
from the nonlinear element becomes 

y = R’ 1 + R; sin ( wet + cp,) (74) 

In other words, the output from the nonlinearity is a different d-c bias plus a sinu- 
soid of different amplitude and with some phase angle, ‘pl, with respect to the input. 
The quantity, w. , represents the limit cycle frequency. We now define the following: 

Limit Cycle DIDF 3 No (R Ro’ 
, RI) = R ej’l 

0 
0 

Signal DIDF f Ns ( R R; 
OS R1) =y 

1 

(75) 

(76) 
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Figure 44. Control Loop for DIDF Analysis 

Figure 45. Input and Output Waveforms 
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The nonlinearity in a limit cycling control system is therefore character- 
ized by two DIDF’s. The first of these, the limit cycle DIDF is used to predict the 
system limit cycle in a manner identical to that in conventional describing function 
analysis; i.e. , the limit cycle is obtained as the solution to the equation 

No CR,, R1) GO @) .= -1 

as described in Section 3.2.3. 

The signal DIDF will be considered as a linear gain for some range of 
(Rl/Ro), and will therefore lead to a linear system description from the point of 
view of command inputs. This situation is depicted in Fig. 46, and represents the 
approximate mathematical model for the study of the input-output dynamics of the 
given nonlinear system. 

It is clear that the equivalent representation is valid whenever the DIDF 
formulations are themselves valid. This means that in addition to the usual condi- 
tions imposed on the conventional describing function, two additional requirements 
must be satisfied. These are: 

R 
.-A<1 
R 3 

0 

w 

8< 
1 

w -i- 
0 

(77) 

where us is the frequency of the input signal, x(t), and W, is the limit cycle fre- 
quency . 
Velde(l’) 

A thorough discussion of these conditions is contained in Gelb and Vander 
. 

The requirement imposed on the frequency ratio stems from the assump- 
tion that the error (between input and output) be approximated by a d-c bias over one 
limit cycle period. The requirement on amplitude ratio is necessary to ensure that 
higher harmonics in the DIDF approximation be negligible compared to the fundamen- 
tal. Gelb and Vander Velde show that when conditions (77) are satisfied, the approxi- 
mate DIDF is within 5% error referred to the untruncated expression for the DIDF. 

The above ideas csn be clarified by considering a particular case. 

Example 7: The system to be investigated is shown in Fig. 47. We begin by deriving 
the relevant DIDF’s for the relay. We use 

X = R1 + R, sin Wet 
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R, sin wt 

Figure 46. Equivalent Control Loop for DIDF Analysis 

r 
+ 7 X Y +v + 

2 
Y C 

- 
s (s2 + 2 4, w1 8 + W12) 

Figure 47. Control Loop for Example 7 
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From Eq. (75) 

N =-& 
3 

0 
J 

(-D) sin 8df3 
0 

-- 2” 

where 8 = war. Also 

where 8 
-1 

1 
= sin Note that for R1 “small” 

which is precisely the conventional describing function for a relay, and 

Ns = 
2D 
nR 

0 

The aim of the present analysis is to determine the conditions under 
which a representation of the form of Fig. 46 is valid. For in that case, conven- 
tional linear techniques may be employed to determine the input-output system 
dynamics. It is not difficult to show that in order to satisfy the relations in Eq. 
(77)) it is necessary lulat the dominant closed-loop poles of G(s) in Fig. 46 lie with- 
in a circle of radius 5 a ( with center at the origin) in the complex plane. 
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The limit cycle frequency, @,, and amplitude, Ro, may be determined in 
the usual manner for the system of Fig. 47. The results are displayed in the root 
locus of Fig. 48. For this simple case, it is more convenient to work with the equa- 
tion of the root locus which is 

302 - u2 + 4 5, w1 0 + 60; = 0 

s = u +jw 

This curve crosses the imaginary axis (u = 0) when o= ~1 which means that the 
limit cycle frequency, & = wl. 

Now by substituting s = jw 1 in 

1 + No G(S) = 0 

we find 

But since No 
4D w -, the limit cycle amplitude is determined as 

fTR 
0 

The value of Ns in Fig. 46 is, in the present case, 

N NO m--Z 
s 2 5 1 Y 

In order to determine the value of the closed-loop pole on the real axis, 
we put 

s=u 

in the system characteristic equation 

1 + Ns G(s) = 0 
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Im 

Figure 48. Root Locus for Example 7 

This yields Q = - (1 01 if 51 =z 0.1. The closed-loop poles are indicated in Fig. 48. 
It is seen that the dominant closed-loop pole is within the circle of radius + oo, fndi- 
eating that the equivalent representation of Fig. 46 is valid. A typical response to a 
step input is shown in Fig. 49 for the actual system and for its equivalent linear rep- 
resentation. The agreement between the dominant modes in the two cases is seen to 
be remarkably good. 

3.2.5.1 DIDF for Typical Nonlinearities 

below. 
The DIDF for some of the more common types of nonlinearities are listed 
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Limit Cycling Control Time 
System 

output 

Equivalent Linear Control Time 

System 

Figure 49. Response to Step Input for System of Example 7 

a. Relay with Dead Zone (Fig. 50a) 

~o=gJl-~(~~-~(~) 

Ns=$$+$j+;@ 

b. Saturating Element (Fig. 50b) 
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Y 
1 

D --- 

-6 
-x 

6 

-w--D 

a. Relay with Dead Zone 

b. Saturation 

Y 
A 

-X 
-6 6 

, 
-- - 

-D 

c. Hysteresis 

Figure 50. Typical Nonlinear Characteristics 
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C. Rectangular Hysteresis (Fig. 50~) 

d. Polynomial Type Nonlinearity. This nonlinearity is expressible in the form 

y = c xn+c n n-l xn-2 1x1+ . . . . . . . . . +c2x IxI+clx 

There is no loss of generality in assuming that n is odd. We have 

Ck n! n-k- 1 
(n-k)! k! R. 

even 

Ns 
Ckn! n-k 

(n-k)! k! R. 
k-l 

R1 I. (n-k+2) 
2 

where r ( ) denotes the gamma function. 

3.3 LYAPUNOV’S DIRECT METHOD 

The general theory of stability of motion as developed by A. Lyapunov (17) 

(also known as Lyapunov’s Direct Method or the Second Method of Lyapunov) is now 
recognized as the most powerful theoretical technique available for the study of non- 
linear control systems. Indeed the extreme generality of the theory also accounts 
for the frustrating difficulties experienced in seeking to apply the theory to systems 
of even moderate complexity. It is important to recognize that the Lyapunov approach 
provides merely a framework for analysis rather than a detailed computational algor- 
ithm. This is perhaps to be expected since nonlinear systems are best defined in a 
negative sense; that is, a nonlinear system is merely one which is not linear. 

The .Lyapu.nov method was virtually unknown in this country as little as ten 
years ago. However, in recent years , a prodigious technical literature has been 
developed which has served to stimulate interest in this subject among control engin- 
eers. References 18 through 21 are concerned with the basic theory and contain ex- 
tensive bibliographies. 
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For purposes of the present monograph, the exposition will be limited to a 
careful and a precise statement of the principal theorems in language that is familiar 
to control engineers. While this will somewhat compromise the rigor of presentation, 
it will hopefully be compensated by the added degree of physical insight obtained. Ex- 
tensive use will be made of illustrative examples and physical applications. Of the 
principal directions in which the theory has developed in recent years, only those 
which are potentially useful in control system analysis will be stressed. Few proofs 
will be given and little attention will be paid to mathematical niceties. These will be 
disposed of with reference to the pertinent literature. All important results will, 
however, be stated as precisely and completely as possible, with due regard for in- 
herent limitations and conditions to be satisfied. In this way, it is felt, the material 
can be put in a form which is most useful for purposes of practical application. 

3.3.1 Symbols and Definitions 

The presentation of the material in the following sections is greatly facil- 
itated by the use of matrix methods and a uniform terminology. It will be assumed that 
the reader is familiar with the basic operations involving vectors and matrices. 
Throughout Section 3.3, the following conventions will be adopted: 

a. Capital letters will denote matrices. 

b. Lower case English letters will denote vectors. 

C. Lower case Greek letters will denote scalars. 

d. Subscripted English and Greek lower case letters will denote scalars. 

e. The following exceptions are noted. 

1. V, e, g, h, r, twill denote scalars. 

2. i, j , k, n, will denote integers. 

Also 

AT s transpose of matrix A 

A-l 5 inverse of matrix A 

a-b E scalar product of vectors 

va f gradient of a. 

(‘) E d/dt ( ) 

Various terms will be used repeatedly in the following discussions, and, for 
clarity, these are listed and defined below. 
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Definition 1: A system is said to be linear if it may be represented as 

j, = Ax + f(t) (78) 

where A is a constant matrix. .If the coefficients of the matrix, A, are functions 
of the independent variable, t, then the system is said to be linear time varying. 
Any dynamical system which cannot be expressed in the form (78) is called no&near. 

Definition 2: The variables, x1, x2,. . . . . . . . . , xn, which are the components of the 
state vector, x, are referred to as the state variables since at any given instant of 
time, they represent the condition or state of the system. 

Definition 3: The n-dimensional Euclidean space which has axes labeled x1, x2, . . . . . . , 
xn is called the state space. Each point in this state space represents a particular set 
of values that the state variables may assume. Tn other words, each point represents a 
particular state of the system. Given the initial state of the system (t = 0), then for 
t > 0 the state variables describe a trajectory in state space. 

Definition 4: A nonlinear system, described in general by 

i = g(xs t) + QW (79) 

and the linear system, given by Eq.( 78)are said to be forced if f and Q are not zero. 

Definition 5: The systems described by Eqs. (78) and (79) are said to be free if f and 
$ are zero. 

Definition 6: The systems described by Eqs. (78) and (79) are said to be stationary 
if the elements of A and g are not functions of the independent variable, t; otherwise, 
they are called nonstationary. 

Definition 7: A system that is both free and stationary is called autonomous. 

Definition 8: Associated with every vector, x, is a scalar called the norm which is 
written as 11 x 11. A norm satisfies the following relations: 

1. IIxII >O for allx # 0 

2. IIxII = 0 if x = 0 

3. IIX + Y II e IIXII + IIY II 

4. IlaxII = lal- Ilxll, CY =any scalar 

The following are some commonly used norms. 
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1. IlxIj = (xTx)li2 = 
c- i 

x; 

2* IlxII =T Ixj, I 

3. JIxII = max Ixi I 
i 

Only the first of these, which is the standard concept of length of a vector, will 
be used in this monograph. 

Definition 9: The scalar defined by 

p = XTBX 

is called a quadratic form in the state variables x1, x3,. . . . . . . , xn. The n X n 
matrix, B, is symmetric. 

Definition 10: The quadratic form, cl, will be called positive definite if, for all 
x#Oandsuchthatj4=Oforx=O, 

CL’0 

and negative definite if 

Furthermore, g is said to be positive semidefinite if 

and negative semidefinite if 

A (symmetric) matrix, B, is said to be positive definite if the relation 

xTBx >O 

is satisfied. Similar definitions hold for negative definite, and positive and negative 
semidefinite matrices. 

Example (a). 

p (X1’ x2) = x; + f 
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This is positive definite for all x. 

Example (b) 

/&(x,x)=x 
2 2 3 

1 2 1 +x -x 
2 1 

This is positive definite for all x with IIx 11 < 1. 

Example (c) 

P (XI’ x2) = (x1 - x2)2 

Since p = 0 whenever x1 = x2, this is positive semidefinite. 

Example (d) 

/J (x1 2 3 ,x,x)=x 2 
1 + xi 

Here p= 0 whenever x1 = x2 = 0 and x3 is finite. Therefore pis semidefinite. 

Definition 11: If the system described by 

?c = f(x,t) (80) 

has the property that 

f (a, t) = 0 , t>‘o 

then a is called an equilibrium point of the system. Whenever an equilibrium point 
exists, a simple transformation of variables, z = x - a, transfers this point to the 
origin. Consequently there is no loss of generality in assuming that the equilibrium 
point is always located at the origin. 

Definition 12: We consider the autonomous system 

% = f (x) 

which has an equilibrium point at the origin; viz: 

x(0) = 0 

(81) 

(82) 
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Let R(l) be a region in the state space for which I/x II < a!, and let R(2) be 
a similar region for which I/x II < 8. W e may envision these as hyperspheres center- 
ed at the origin with radii OL and fi respectively. It is assumed that or > 4. Further, 
let the initial state of the system at time t = 0 be x = b f 0. We say that the system 
is: 

1. 

2. 

3. 

4. 

Stable, if for every b contained in R(2) there is a region R(3) defined by I/x 11 < y, 
where OI> Y > fi, such thatt12- [x (t)]< cr. In other words, the trajectory of the 
system never leaves the region R(3). 

Asymptotically stable, if for any b in R(2), tl..m [x (t) 3 -0. 

Asymptotically stable in the large (completely stable), if it is asymptotically 
stable and the region R(2) encompasses the entire state space. 

Unstable, if for some b contained in region R(2) with /3 arbitrarily small, the 
lim [x (t)] > cy. 

t-m 

It will be noted that the concept of stability is not as sharply delineated 
as in the linear case. The type of stability is generally a function of the initial state. 
As a rule, a stable system in an engineering sense, is either characterized by a 
limit cycle of “small” amplitude or else a convergent trajectory to the’equilibrium 
point. When a system is asymptotically stable, it is desirable to know the region of 
asymptotic stability. Furthermore, it is important to determine the conditions which 
ensure complete stability. The basic theorems which provide an answer to some of 
these questions are contained in the following section. 

Remark: There is some compromise with mathematical rigor in the above defini- 
tions. A more rigorous formulation could not be attempted without requir- 
ing a firmer theoretical foundation. The definitions are however eminent- 
ly satisfactory for engineering purposes -- and this is the theme of the 
present exposition. Sharper definitions as well as a more extended dis- 
cussion of various types of stability, together with various existence 
theorems, may be found in the literature. (18) 

3.3.2 Basic Theorems 

The very active research, in recent years, in the area of nonlinear sta- 
bility has produced a rich variety of results for determining the stability of non- 
linear systems. Much of this work is of a highly theoretical nature with no immed- 
iate application to practical systems. In keeping with the aim of the present exposi- 
tion, we will present only those results which have proved useful in the study of 
modern nonlinear control systems. The discussions will be, where ever possible, 
in the engineering vernacular, and most of the formal presentations will be supple- 
mented with practical (albeit simplified) examples. 
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We consider an nth order autonomous nonlinear system described by 

2 = f 00 (83) 

with an equilibrium point given by 

x (0) = 0 W) 

In what follows, we shall be concerned with a real valued scalar function 
(the Lyapunov function) having one or more of the following properties: 

I. 

II. 

III. 

Iv. 

V. 

VI. 

All the first partial derivatives of V (x) with respect to the components, xi, 
of x exist and are continuous for all x. 

V(x) is positive definite; i. e. , 

V(x) > 0 40 

V(0) = 0 

The quantity \i (x) = 2 E 
dxi 
- =vv-x 

i=l i dt 

is negative definite; i. e. , 

G(x) < 0 x90 

3 (0) = 0 

The quantity V (x) is negative semidefinite; i. e. , 

e(x) 2 0 40 

v (x)-m as IIX II-- 
G(x) > 0 

The following theorems refer to the system described in Eqs. (83), (84) 
and the properties of an appropriate Lyapunov function. 

Theorem 1: If there exists a Lyapunov function, V (x) , satisfying I, II, and IV, then 
the system (83) is stable in the vicinity of the origin. 

Theorem 2: If there exists a Lyapunov function, V (x) satisfying I, II, and III, then 
the origin in (83) is asymptotically stable. 

Theorem 3: If V(x) satisfies I, II, III, and V, then the origin is asymptotically 
stable in the large. 
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Theorem 4: If V (x) satisfies I, II, IV, and V, and if in addition V (x) is not identical- 
ly zero along any solution of (83) other than the origin, then the origin is asymptoti- 
cally stable in the large. 

Theorem 5: If V(x) satisfies I, II, and VI, then the origin of (83) is unstable. 

Remark: Quite often it is difficult to assure or confirm asymptotic stability in the 
large. One can establish only that the origin is stable, or else asymptoti- 
cally stable. These are only local concepts. The previous theorems (1 
and 2) give no information on the extent of stability or asymptotic stabil- 
ity. We know only that if the perturbations are not “too large, ” the system 
tends to return to the equilibrium state, but we know nothing about what 
“too large” means. The following theorem due to La Salle(24) helps clar- 
ify the situation. 

Theorem 6: Let R@) denote the region where V(x) < r. Within this region, assume 
that V (x) satisfies I and II and that the region R(r) is bounded. Then any solution of 
Eq. (83) which starts in R@) is: 

a. Stable and remains in R(‘) if V (x) satisfies IV in this region. 

b. Asymptotically stable if V (x) satisfies III in R@). 

The theorems presented in this section represent only a small fraction of 
the available theorems relating to Lyapunov’s second method. They do include, how- 
ever, most of those of direct interest to the control engineer. Various additional 
results and generalizations, applicable in special circumstances, will be presented 
in the following sections. 

A few general observations are in order at this point. We note first of all 
that the conditions for stability given thus far are sufficient; they may not be neces- 
sary. ConsequentIy, failure to satisfy the conditions of these theorems does not 
mean that the system being analyzed is necessarily unstable. Furthermore, a Lya- 
punov function for a given system is not, in general, unique. The determination of 
that Lyapunov function which yields the least restrictive conditions on stability is 
often a difficult problem. 

Finally, the most obvious limitation in the practical application of the 
direct method is the lack of a general systematic procedure for generating Lyapunov 
functions . A variety of specialized techniques, applicable in particular circumstan- 
ces, will be discussed in the sections to follow. The use of the theorems presented 
thus far will be illustrated in the following examples. 
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Example 8: 

. 
=X 

x1 2 
- QX (x2 

1 1 + + 

. 
x2 = -x1 - ax2 ( x2 1 + + 

where 01 = positive constant. 

If we take 

v = x; + x; 

then 
+= -2 a lx; 

2 2 
+ x2 1 

which is obviously negative definite for all x. Furthermore, we note that 

large. 
Consequently, by theorem 3, the system is asymptotically stable in the 

Example 9: 

. 
x1 = x2 

. 
x2 = 

- 01 (1 + x2 I2 x - 2 x 1 

Q = positive constant 

Again take 

v = xi + x; 

It follows that 

+ir -2 a (1 + x2 )2 x; 

which is negative semidefinite*. Also 

*Since ir = 0 for x 
2 

= 0 and x1 arbitrary. 

103 



We will now show that $ = 0 is not a trajectory of the system. In fact, 
iT = 0 implies that x2 equals zero or -1. The slope of the system trajectory is 

dx2 x1 - =- 
dxl 

o! (1 + x2)2 - - 
x2 

But for x2 = 0, this slope is infinite, which means that the xl axis cannot be a 
trajectory of the system. Furthermore, for x2 = -1, we have 

* 

dx2 -- 

dxl 
=x 

1 

which is never zero except at the origin. Therefore the line x2 = -1 cannot be a 
system trajectory. 

Since we have now fulfilled the conditions of theorem 4, we conclude that 
the origin of the given system is asymptotically stable in the large. 

Example 10 : 

y + (l-)c.I)<+ c= 0 

Putting F = x1, we write this as 

. 
=X 

x1 2 

. 
x2 = - ( 1 - Ix, I, x2 - x1 

Again taking 

v = x; + x; 

we find 

+ = -2 x; ( 1 - Ix, I) 
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Consider now the region in the state space which is bounded by the curve 

2 2 x1 + x2 = 1 

Within this region V is positive definite and V is negative definite. There- 
fore, by theorem 6, this region is asymptotically stable. 

Example 11: 

. . . 3 x1 + x1 + x1 = 0 

We write this as 

. 
x1 = x2 

. 3 
x2 = -x2 -x1 

Here, if we take V = x9 + x; as before, we can obtain no conclusive 
results. However, if we use 

then there follows 

+ = -x; 

which is negative semidefinite. Reasoning, analogous to that of Example 2, shows 
that V = 0 cannot be a trajectory of the system. And since V-m as IIx 11-03, 
theorem 4 enables us to conclude that the origin of the system is asymptotically 
stable in the large. 

Example 12: Some of the examples considered thus far can be analyzed from a more 
unified point of view. ( lg) Consider the dynamical system 

‘E + g(f) i + h(c) = 0 

We assume that g and h are polynomials in c, with g even and h odd. It is also 
assumed that h (0) = 0. Define 
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c 

g (c) d c 
0 

h (c) d c 

0 

Note that cp is odd and r(, even, and that 

cp(o) = Q(o) = 0 

Now write x1 = C, and express the system in the equivalent form 

. 
x1 =X 2 - cp 6,) 

. 
x2 

= -h (xl) . 

Note that under the foregoing assumptions, the origin is an equilibrium point of the 
system. 

As a Lyapunov function, we take 

v=;x; + I 

It follows that 

+ = -h (xl) cp(x,) 

We now suppose that there exist two positive constants, o! and /3, such that 

h (xl) cp (xl) > 0 forlxl) <a, x1 + 0 

#I (xl) c /3 implies Ix, I < ck 

If these two relations are satisfied, then the region defined by V < 6 is bounded 
and within this region V 2 0. Furthermore V = 0 in this region only when x1 = 0. 

But the x2 axis is not a trajectory of the system since the slope 

dx2 h (xl) 
-= - 
dxl x2 - (b (x1) 

106 



is finite for x2 = 0. By theorem 6, we conclude that every solution initiating in 
the interior of the region defined above is asymptotically stable. 

where p 

with 

Taking 

we find 

As an example of this approach consider the system 

a + p(l- r2) i + c = 0 

= positive constant. In this case, with Q = x1, we have 

. 
x1 =X 2 - cp (xl) 

. 
x2 = -h (xl) 

g (x1) = p (1 - x;) 

h $1 = x1 

3 

(b (x1) = ( ) x1 
p x1 - 3 

Q (x1) = $ x; 

v=$x2 2 + $J (x1) 

=- ; (x; + XT) 

2 

+= ( > x1 -px; l-3 

which is negative semidefinite for 1x1 I c e Consequently, we take Q! = fi Now 
if 1(, (xl) c fi is to imply that bl I< r, we must have @ = 3/2. 
fore, that the region bounded by XT + xi = 

It follows, there- 
3 is a region of asymptotic stability. 
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3.3.3 Lur ‘e Method 

The earliest successful attempt to evolve a systematic method for gener- 
ating Lyapunov functions is due to Lur ‘e. ( 20) This technique is the subject of a book 
by Leto~(~l) which discusses many applications in great detail, but which is overly 
burdened by an awkward notation. As a matter of fact, it is possible to exhibit all 
the essential features of the method quite clearly and succinctly by adopting matrix 
notation. Various distinctions considered by Letov and other Russian investigators 
are shown to be irrelevant. The emphasis in the present discussion will be on ad- 
apting the basic results to realistic control systems without, however, compromis- 
ing the analytical development. The power of the Letov method lies in its ability to 
analyze systems of moderate order. There are, nevertheless, serious restrictions 
on the type of nonlinear system which may be treated. To motivate the discussioni 
we consider the system shown in Fig. 51. The nonlinear function, 56 (Q), satisfies 
the conditions 

cr 

/ 
cp (u)do >‘O for all loI > 0 

0 

(0 (0) = 0 

G(s) is a linear transfer function of the form 

G (~1 s 
cp 

= 
c 
n ~n-i si 

i=O 
n 

c 
o! 2 n-i 

i=O 

(85) 

(86) 

We assume that the denominator of this expression contains no multiple or zero 
roots and that each of the roots has a negative real part. It may also be assumed, 
without loss of generality, that the coefficient of sn in the denominator is unity. 
We also add the restriction that the degree of the numerator is at least one less 
than that of the denominator. In summary, it is stipulated that 

Q =l 
0 

Under these conditions, it is always possible to write the input-output 
dynamics of the linear element in the form(25) 

037) 

2 = Ax + bcp(o) 

0 = -x 
1 

(88) 
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Figure 51. Representation of Nonlinear System 

where x and b are n vectors and A is a constant matrix determined from 

8 = xi 

. 
“i 

=x 
i+l + bicP 

i = 1, 2, . . . . . . . . . . . , i-l 

2 =- cy 
n n-i+1 Xi + b, CP 

bO 
= 8, = 0 

bi = 8, -$‘aiej bj 
j=o 

(89) 

(91) 

i = i, 2, . . . . . . . . . . . ,n 

109 



This method is illustrated by a simple example as follows. 

8 G(s) = - = 
I$ s + B2 

(0 S2 +a s+cY 1 2 

From Eq. (91) we find 

bl = 8, - 

b2 = B, - 

Also, using Eqs. (89) 

. =x + 
x1 2 

ab = lo 8, 

crb - 2 0 5 bl = l92 - 5 4 

and (90) 

. 
x2 = - a!2 x1 - a1 x2 + (B, - a1 8,) cp 

Expressed in matrix notation 

6 = x1 

Notice that in the format of Eq. (88)) the numerator dynamics (deriva- 
tives of the driving function) are effectively eliminated. In the analysis to follow, 
we will consider a slightly generalized version of Eq. (88); namely, 

k = Ax + bv (,-,) 

u = vTx 
(92) 

(v 3 a constant n vector) 
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Lur ‘e considered the ,dynamical system 

i = Ax + bv(o) 

i = Q (0) WV 

0 =yTx + ye 

He distinguished between indirect control (when y. + 0) and direct control 
(Y = 0). We will in fact show that these distinctions are irrelevant and that Eqs. 
(93) are completely equivalent to Eqs. (92). 

Suppose that y t 0. Differentiating the third of Eqs. (93) and making use 
of the first two, we find 

= vTAx + (vTb + y) Q 

There is indeed no loss of generality in assuming that y = 0. For if 
y f 0, and we write, instead of Eqs. (93) 

k = Ax + bcp+ fQ 

u=vTx 

where f is a constant vector defined by 

y= vTf 

one finds that 

b = vTa 

= vT (A X + bQ+ fQ) 

= vTAx + (vTb + y) Q 

Consequently a nonzero y need not be considered explicitly if the b vector is appro- 
priately modified. 

All of the analysis to follow will deal with the system of Eqs. (92)) with 
the nonlinearity satisfying conditions (85). By virtue of the stipulations placed on 
the linear element, G(s), the constant matrix, A, satisfies the following. 
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I. All the eigenvalues of A have negative real parts. 

II. No eigenvalue of A equals zero. 

III. AI1 the eigenvalues of A are distinct. 

Some of these restrictions will be relaxed in Section 3.3.4. 

The system (92), which is in the phase variable (canonical) form, 
may be expressed in diagonal form by making the transformation 

X =Ty 

where 

T = 

. 
n-l 

5 

1 . . . . . . . . . . . . . . . . . . . 

xz 
. . . . . . . . . . . . . . . . . . . 

. 
n-l 

x2 
. . . . . . . . . . . . . . . . . . . 

1 

A n 

n- 
x n 

(94) 

This matrix is known as the Vandermonde matrix; the Ai are the eigenvalues of A. 
As a result of this operation, we find 

u = cTy 
W-3 

where 

F= E TelAT (97) 
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m = T-lb (98) 

C = TTv (99) 

For the Lyapunov function, we take* 

v = yTPy + 
P 

Q(u) da (100) 

0 

Taking the derivative with respect to time using Leibnitz’s formula, and making use 
of Eq. (96), with 6 = cT y one obtains 0 

. .T T . do 
V=Y PY+Y Py+Q(o)dt+ at 

J 
acp(a) do 

0 

= fTPJ’ + yTPj, + bQ(U) 

= -yTQy + Q (zmT P+cTF)y+cp c 2 Tm (101) 

where 

Q = - (FTP + PF) (102) 

In seeking to establish asymptotic stability in the large, we must have 
(by theorem 3) 

v>o 
Tj<o 
V-m as I/y 11-m 

If P is positive definite, and if (85) holds, the first and third conditions are auto- 
matically satisfied. To satisfy the second condition, Q must be positive definite. 
It is known(l9) that if all the eigenvalues of F have negative real parts, then in 
Eq. (102) if P is positive definite so is Q, and vice versa. One may therefore 
choose either P or Q in some appropriate manner. 

Following Lur ‘e, we let 

Q = aaT (163) 

The components of the vector, a, are chosen as follows. If Xi = Ai, where ( )* 
is used to denote complex conjugate, then ai = a;. Otherwise, the ai’s are 

*P is a constant symmetric matrix whose elements are, for the moment, undeter- 
mined. 
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simply constants (as yet undetermined). Writing 

T r = -c m (104) 

and substituting Eq. (103) into Eq. (lOl), and then completing the square, 
results in 

+ = - [aTy - Q+j2+Q[.mTP + cTF +2aTfi]y (105) 

If r > 0 and Q (0) = 0, then the above expression is negative definite if 

2mTP + cTF + 2aTfi = 0 (106) 

Consequently, if a vector, a, can be found to satisfy this equation, we may 
assert that the system (92) is asymptotically stable in the large (via theorem 3). 

To solve Eq. (106), it is necessary to solve Eq. (102) for P, where Q 
is given by Eq. (103). This solution is (27) 

P = J eFLt Ft 
Qe dt 

0 

Now 

It follows therefore that the (ij) th component of the matrix 

eFTt 
Qe 

Ft 

is 

(107) 

a. a. e 
‘Ai +x,,t 

1 J 
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Furthermore 

a. a. 
a txi+xj’t 

1 J / 
e “‘z--$.& 

+ 
i j 

0 

Therefore, the (ij) th component of the P matrix is given by 

pij = - 
‘j ai 

‘Xi’ x 1 1 
W3) 

Various additional stability criteria may be developed by taking modi- 
fied forms of the Lyapunov function, (100)) and placing additional restrictions on the 
nonlinearity. The reader is referred to Letov(21) for details. We now illustrate 
the application of this method by a simple example. 

Example 13: The system block diagram is as shown in Fig. 51, and the nonlinearity 
satisfies (85). The linear transfer function is 

(s +4) 8 
G(s) = (s+l) (s+2) = (p 

s+4 = 
2 

6 + 3s + 2 

Using relations (89) through (91), we obtain 

k = Ax + bq 

where 

0 1’ 

A= 
-2 -3 

1 
b= [I 1 

115 

I- 



and 

(J = VT, = 
-x1 = -% 

where 

-1 
V= [ 1 0 

The eignevalues of A are, in general, obtained from (I = identity 
matrix) 

IA - AI] = 0 

However, in the present case, these eigenvalues are the poles of the open-loop 
transfer function, G(s); viz. 

A, = -1 

x2 = -2 

Calculating the Vandermonde matrix 

1 1 
T= c 1 -1 -2 

and its inverse 

we then have 

-1 0 
F= [ I 0 -2 
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from Eq. (97)) while .- 

3 
m= [I -2 

r1 
C = - 11 1 

from Eqs. (98) and (99) respectively. Furthermore, via Eq. (104), we find 

T r = -c m=l 

and 

using Eq. (108). 

Finally, in order to satisfy Eq. (106), and therefore to establish that the system 
is completely stable (asymptotically stable in the large), there must exist real 
constants, al and a2, satisfying 

2 
al 

+ $ (2 - “3 a2) al + $ = 0 

2 
al 

- 2 (a1 + 1) a2 -2 = 0 

This is indeed the case since we find that al = -0.98 and a2 = -1.41. 

For higher order systems, it becomes increasingly more awkward to 
solve Eq. (106) for the vector a. For an nth order system, the n components of 
the vector, a, are to be obtained by solving n simultaneous algebraic equations. 
This presents serious difficulties at the computational level. An approach which 
offers some advantages in this respect is the following. 
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We assume that 

Q= 

0 
I 
n 

(109) 

Here the Yi’S are positive constants. Substituting this expression for Q in Eq. 
(lOl), and completing the square, yields 

-+ = (y + cpQ-’ u)~Q (y + q&-l u) + (r-uTQ 
-1 

u) v2 010) 

where 

u = - (Pm + i Fc) (111) 

and r is as defined by Eq. (104). Since Q as defined by Eq. (109) is obviously 
positive definite, the right-hand side of Eq. (110) is positive if 

r puTQ -1 u (112) 

This condition replaces (106) as the requirement for complete stability. 
The essential difference is that (112) is a scalar inequality rather than a set of 
simultaneous algebraic equations. 

A slight complication arises when some of the eigenvalues of the state 
matrix, A, are complex. For yi in Eq. (109) positive, this will result in some 
of the components of P, as calculated from Eq. (102), being complex, with the 
result that some of the components of u, obtained from Eq. (lll),are also complex. 
This simply means that in (112) one simply uses the Hermitian form, u* Q-l u 
rather than uT Q-l u. Nothing else is changed. 

The following example illustrates the application of the method. 

Example 14: We consider the system whose nonlinearity satisfies (85) and which 
is described by 

kir Ax + b<p 

a = VT, 
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where 

1 

0 

-31 

-1 

v= -1 [I 0 

The eigenvalues of A are 

A, = -2 

A, = -3 

A, = -5 

so that 

-3 

1 

-3 

9 

T- 

16 2 

-21 -3 5 1 I 
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and 

1 
T 

c=Tv= [ 1 2 

4 

r = -cTm = 8 

Taking Q as 

Yl 

Q= 

[ 
0 

y2 

0 

y3 

where the Yi’s are (as yet undetermined) positive constants, we solve for P either 
from Eq. (107) or (102). The result is 

1 y1 0- 
-z 5;;- 

P= 1 Y2 --- 
2 x2 

0 1 y3 --- 
2 x3 - 

viz. 
The components of the vector, u, are now obtained from Eq. (111); 

u. = 
1 ~ (mi Yi 

i 
+ Ai’2 

i = 1, 2, 3 
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where mf denotes the i th 
component of the vector, m. 

Consequently, the inequality (112) becomes 

- 6)2 
83 

(Yl + 3)2 (Y2 (Y3 + w2 

9Yl + 
+ 

16 Y2 100 Y3 

One set of positive Yi’s which satisfies this inequality is 

Yl = 1 

Y2 = 6 

Y3 
=50 

We conclude therefore that the given system is completely stable. 

The Lur’e method represents an important step in the development of a 
fairly general theory of stability for nonlinear systems. 

The technique can be applied to moderately high order systems describ- 
ed by the format of Eqs. (92) with the nonlinearity satisfying (85). A more detail- 
ed description of the nonlinear element is not required. Cn the other hand, phase 
plane methods are limited to second order systems, while the describing function 
technique requires a fairly precise description of the nonlinearity. 

There are several severe limitations, however. It is possible that the 
criteria of Eqs. (106) or (112) will fail to be satisfied even if the system is stable. 
In this case various modifications of the assumed Lyapunov function, (loo), may 
be taken, together with the application of additional restrictions on the nonlinear- 
ity. This will yield slightly different stability criteria which may be satisfied 
where others might not. Several such approaches are considered by Letov. (21) 

Nevertheless, there are restrictions of a fundamental nature such that 
stable systems will always be rejected by the Lur i!! method. Consider, for exam- 
ple, a linear element described by 

Q =ko 
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This obviously satisfies (65). It is apparent therefore, that in the case of a lin- 
earized system, the Lur ‘e stability criteria would select as stable only those 
systems that are stable for all positive values of the open-loop gain. If the root 
locus of the open-loop transfer function, G(s), is not confined to the left half of 
the s plane, a linearized system will, for some positive value of the open-loop 
gain, be unstable. Hence the stability criteria developed in this section will re- 
ject all those systems of the type shown in Fig. 52. 

It must be emphasized, however, that the fact that a system with a 
single nonlinear gain element is confined to the left half of the s plane does not 
imply that the system is stable. Conversely, the fact that the linear portion of a 
system with a single nonlinear gain element is not confined to the left half of the 
s plane does not imply that the system is unstable. 

Based on the foregoing considerations and the assumptions inherent in 
the Lur ‘e method, we may summarize the reasons why stable systems will be 
rejected by this method as follows. 

a. The root locus of the linear part of the system is not confined to the left half 
of the s plane. 

b. There are open-loop poles at the origin of the s plane. 

C. The open-loop function has multiple poles. 

d. The constant, r, in (106) or (112) is negative. 

An approach which broadens the scope of the Lur ‘e method considerably, 
and which overcomes most of the above limitations is described in the following 
section. 

3.3.4 Pole and Zero Shifting 

Some of the most serious limitations in the Lur ‘e method may be re- 
moved by adopting an approach developed by Rekasius and Gibson. (22) The pole 
shifting technique may be used to: 

a. Analyze a system whose open-loop gain does not fall below a certain minimum 
value. 

b. Separate multiple open-loop poles. 

c. Analyze systems with open-loop poles in the right half plane. 

Essentially, what is involved is an appropriate change of variable such 
that the transformed system satisfies the restrictions of the Lur ‘e method. We will 
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a. Stable for low values of gain 

Im 

Re 

Re 

b. Stable for high values of gain 

Im 

Re 

c. Stable for intermediate values of gain 

Figure 52. Root tici for Certain Linear Systems 
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consider the system depicted in Fig. 51 and described by Eq. (92). It is assumed 
that the nonlinearity satisfies the inequality 

> ctu 
2 

UQ (113) 

where CY is a positive constant. 

In other words, the nonlinearity is confined to the first and third quad- 
rants such that 1 Q 1 always exceeds o! 1 a I. (See Fig. 53.) Now define a new var- 
iable, Q ‘, by 

Q’=Q - cYU (114) 

Substituting this in (113) yields the new condition 

UQ’> 0 (115) 

which obviously satisfies (85). The revised block diagram is shown in Fig. 54. 
If we now deal with the new nonlinear parameter, Q: defined by Eq. (114) and the 
new linear transfer function 

G(s) = G(s) 
1 + Q! G(s) (116) 

it is found that all of the stipulations of the Lur ‘e method may be satisfied. Speci- 
fically, we note that if 

G(s) = EEL 
D(s) 

where N(s) and D(s) are polynomials in s, then 

G(s) = N(s) 
D(s) + Q! N(s) 

It is obvious that an arbitrarily small value of o! will separate multiple 
poles and that increasing values of p! , will, in most cases of interest, shift a pole 
in the right half plane into the left half plane. Consequently the pole shifting tech- 
nique may be used to prove the stability of systems where the Lur ‘e method fails. 

The zero shifting technique may be employed to study the stability of 
‘systems whose open-loop gain does not exceed some specified maximum. In par- 
ticular, suppose that the nonlinearity satisfies the inequality 

0 “< UQ < /td (117) 
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Figure 53. Characteristics of Nonlinear Element 

n-n 
I 

A* I+@) Q 

r---T ‘-7 
/ 

I 
r 

a Ji I I . I 
l- --m------ J 

Figure 54. Revised Block Diagram in Pole Shifting Method 
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where fl is a positive constant. (See Fig. 55. ) 

Defining a new variable by 

of= 0 
f 

(118) 

and substituting back in (117) yields 

U’Q 3 0 

However, the Lur ‘e method cannot be applied directly since the input to the non- 
linear element, a: is no longer given by the second of Eqs. (92). (See Fig. 56. ) 
A Lyapunov function other than (100) must be tried. If we select 

v = yTPy 

where y represents the canonic state vector in the system described by (96), and 
P is a constant symmetric matrix, then we find 

+ = - yTQy + 2cpmTPy 

where Q is given by (102). As in the Lur ‘e method, we take Q to be of the form 
(103). Completing the square in V then yields 

The resulting stability equation becomes 

mTP = 0 (119) 

By using pole shifting combined with zero shifting, an even wider range 
of systems may be analyzed. Reference 22 contains a variety of examples together 
with several modified Lyapunov functions. 

3.3.5 The Variable Gradient Method 

The usual metho& of Lyapunov stability analysis begin with an assump- 
tion of a tentative Lyapunov function from which an attempt is made to determine 
those conditions which ensure that the system is, in some sense, stable. The sel- 
ection of a suitable Lyapunov function, appropriate to a given system, is a task 
which generally taxes the ingenuity of the analyst. In this section, we consider 
methods for generating Lyapunov functions systematically. Various studies in 
this connection have been reported by Szego(29) and Ingwerson(2g), but the variable 
gradient method, developed by Schultz and Gibson, (23) is by far the most powerful. 
We will consider this method in some detail. 
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Figure 55. Characteristics of Nonlinear Element 
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Figure 56. Revised Block Diagram in Zero Shifting Method 
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It is known that if a system is stable in state space, then a Lyapunov func- 
tion, V, exists for this system. ( 18) Furthermore, if V exists, then its gradient, 
VV, also exists. Given this gradient, both V and V may be calculated. We note that 
when V is given one may write 

+= c aV dxi 
i 

zip- 

where for ii, we insert the system equations. Now this may be expressed as 

iT = (vV)Ti 

To find V from VV, we write 

X 

J 

X 

V= (VlqTdx = 
/ 

vv - dx 

0 0 

(120) 

This is a line integral to an arbitrary point in the state space and is independent of 
the path of integration. The simplest such path is the following 

x1 x2 
V= 

J 
v1 (y,,o ,.....,o)dyI + 

/ 
V2(x1s y2s o.--~o)dy2 

0 0 

+ . . . . . . . . . . + 
/ 

vn (x1, x2, . . ..a. xnB1s ynWyn 

0 

(122) 

In this expression, Vi ( ) stands for the i 
th 

component of the vector, VV. 

To obtain a unique scalar function, V, by a line integration of a vector func- 
tion, vV, it is necessary that(30) 

v x vv=o (123) 

The core of the variable gradient method is contained in the following assumption for 
the form of the vector, VV. 
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vv = 

r @llX1 + "12x2 + . . . . . . . . . . + O!lnXn 

I a21 x1 + o22 x2 + . . . . . . . . . . + a2nXn 

I 
............................ ............ ........................................ 
cl! 

1 
nlX1 +01 n2 x2 

+ . . . . . . . . . . *+ o! m xn 

(124) 

The coefficients, aij, are assumed to be made up of a constant portion and a portion 
which is a function of the state variables; viz. 

o!.. =o!.. +a 
11 1Jk ij cL (x) (125) 

Several significant properties of the oij emerge upon examination of (124). 
First of all, the solution of a given problem may require that the ith component of 
VV; i.e. 

vi = CL1 x1 + ai2 x2 + . . . . . . . . . . +ff in xn 

contain terms that have more than one state variable as factors. Evidently such 
terms may be determined from terms such as oij (x) Xi; therefore, the oii ,(x) 
may be taken without loss of generality as oiip (Xi). Furthermore, for V to be pos- 
itive definite in the neighborhood of the origin, oiik must always be positive. Also, 
if the relation 

is to be satisfied, then (Y.. ii p (xi) must be an even function of Xi and greater than zero 
for large Xi. In case o!iik = 0, then, for the same reason, we must have ‘Yii c1 (Xi) 
even and greater than zero for all Xi. 
by the curl equations (123). 

Additional restrictions on the “ij are imposed 
Finally, the oij must be so chosen, as to make V at 

least negative semidefinite. 

In practice, the procedure is often simpler to apply than the above exposi- 
tion would indicate. To begin with, one may assume the ~ij’s are constants, using 
state dependent cx.. 11 

Is only if needed to satisfy the curl equations or to make I? nega- 
tive semidefinite. 
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The formal application may be summarized as follows: 

a. Assume VV of the form shown in Eq. (124). 

b. From VV determine V via Eq. (120) and the state equations of the system. 

C. Constrain V to be at least negative semidefinite. 

d. Determine the remaining coefficients, “ij via Eq. (123). 

e. Recheck V since step d. may have altered the V determined in step c. 

f. Determine V via Eq. (122). 

g * Check system stability by any of the theorems of Section 3.3.2 

We illustrate this procedure by a simple example. 

Example 15: The system to be analyzed is shown in Fig. 57. The nonlinear element 
is described by 

Q = u$‘(u) 

where $I ( u) is some arbitrary function of u We seek to determine the restrictions 
on # ( a) and the zero, j3, of the linear transfer function, such that the system is 
asymptotically stable in the large. This particular problem is treated by Schultz 
and Gibson, (23) and among their derived stability conditions is that the slope of the 
nonlinearity must be positive. It will be shown here that this requirement is, in 
fact, unnecessary. The differing results stem from the fact that the equations of 
Schultz and Gibson contain derivatives in the forcing function, which may be elimin- 
ated by making the transformation of variables described in Section 3.3.3. Proceed- 
ing in this way, we write the state equations as 

. 
x1 = x2 - h(xl) x1 

. 
“2 = -x2 - (8-l) h lx,) x1 

where 

e= x1 = -0 

h (xl) = #J l-x,) 

From Eq. (124), we have 

130 



0 
b -1 b NL 

Q 
b s+B 8 

s (8 + 1) 

Figure 57. Control Loop for Example 15 

where we have arbitrarily set a22 = 2. Experience has shown that this particular 
selection for cllnn is appropriate for most systems of practical interest. From Eq. 
(120), we find 

+= o! 
[ 11 -a21- II(o)Q112-w(~) (B -1) 1 x1x2 

- 11, (0) all + (B - 1) u21 
[ 1 x; - (2 - cy12) x; 

To satisfy (123), we must have 
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52 = “21 

If we put 

52 = 0 

and 

“11 = 2 (8- 1) 9 (0) 

then the expression for I? becomes 

Tj= - 2 x; - 2 (6 - 1) G2 ( cf ) x; 

which is obviously negative definite if j3 > 1. We now have 

vv = 
[ 

2 @(a) (B - 1) x1 

2 x2 1 
Determining V via Eq. (122)) it is found that 

Xl 
v = x; + 2(/3 - 1) 

/ 
h (xl) x1 hl 

0 

Now for V > 0 and c < 0, it is sufficient that 

Furthermore, the condition 
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p 

is obviously satisfied. Theorem 3 of Section 3.3.2 enables us to conclude, there- 
fore, that the given system is asymptotically stable in the large if 

and 

3.3.6 Miscellaneous Methods 

The specific means of applying the Lyapunov theory discussed in the pre- 
vious sections are perhaps the simplest and most useful presently available. There 
exists, however, an extensive literature dealing with specialized Lyapunov functions 
applicable to particular systems. Even an abbreviated discussion of all of these 
techniques is beyond the scope of the present study. A few are nevertheless worthy 
of passing notice. The Zubov method(31) is an elegant means of constructing Lya- 
punov functions; this method is, however, dependent on solving certain partial dif- 
ferential equations whose complexity depends on the system being analyzed. It is 
therefore useful only for simple systems of low order. Puri and Weygandt(32) 
develop a method based on analogy with Routh’s canonical form for linear systems. 
A concept of some merit, due to Reiss and Geiss(33) involves the construction of 
Lyapunov functions, from an assumed V, by integrating by parts. A recent study 
by Brockett(34) develops new stability criteria for linear, stationary systems with 
a nonlinear gain feedback. These criteria involve only the frequency response of 
the linear portion and the maximum value of the nonlinear gain. 

In this section we will conclude the study of Lyapunov stability theory by 
considering two cases of special interest. The first of these is a very general 
result which may be derived with very little effort. We consider the system 

k = f (x) 
(126) 

f(0) = 0 

As a Lyapunov function, we take 

V = xTQx 

where the components of Q are constants. Then we have 

+ = fTQx + xTQf 

w7) 

(128) 
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By carrying out the computation for & [ f (a x)] it may be verified that 

1 

f(x) = 
J 

J (ax)xda! 

0 

where J(x) is the Jacobian matrix of f(x). Substituting this in (128), we find 

1 
+= xT 

/ c 
JT(ax) Q + QJ (ax) 1 xda! 

0 

(129) 

(130) 

Therefore, by theorem 3 of Section 3.3.2, we may conclude that the sys- 
tem (126) is asymptotically stable in the large if for some positive definite matrix 
Q, the matrix [JT (x) Q + Q J (x) ] is negative definite for all x + 0. 

As usual, the selection of a suitable matrix Q for the problem at hand is 
the core of the matter, requiring a judicious blend of experience and ingenuity. 

We conclude our discussion of the Lyapunov theory by taking note of some 
deceptive facets of the stability problem for linear nonstationary systems. It is 
common practice, in the design of autopilots for launch vehicles, to take so-called 
“time slices”; in effect, a linear, time-varying system is analyzed by assuming 
that it is valid to consider the system as non-time- varying during preselected 
small time intervals. Essentially, the assumption may be stated as follows. If in 
the system 

2 = A (t) x (131) 

the eigenvalues of A(t) have negative real parts for all t, then the system may be 
presumed stable. That this premise is not true in general may be demonstrated 
by the following counter-example due to Zubov. (35) For the system described by 

. 
x1 = (12 sin 6t cos 6t - 9 cos2 6t -1) xi 

+ (12 cos2 6t + 9 sin 6t cos 6t) x 
2 

. 
x2 

= (9 sin 6t cos 6t - 12 sin2 6t) x 
1 

- (12 sin 6t cos 6t + 9 sin26t + 1) x2 

The eigenvalues are -1 and -10 for all t. Yet the solution is 
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x1 
= a1 exp (2t) (cos 6t + 2 sin 6t) + 01~ exp (-13t) (sin’6t -2 cos 6t) 

x2 
= a1 exp (2t) (2 cos 6t - sin 6t) + a2 exp (-13t) (2 sin 6t + cos 6t) 

which is obviously unstable. 

The Lyapunov theory may be applied in straightforward fashion to the sys- 
tem described by (131). Let C(t) be a positive definite matrix for all t. As a Lya- 
punov function, we take 

v = XT c(t) x (132) 

Taking the derivative with respect to time 

+ = xT(ATC + CA + C) x = xTBx (133) 

To prove stability, one must select a positive definite matrix C(t) such that G, as 
given by (133) is negative definite. In certain simple cases, some useful results 
may be obtained as follows. Let the system of Eq. (131) be of second order with 
the matrix, A(t), given by 

A(t) = 

where aI and a2 are functions of t. Assume that the matrix C(t) has the form 

c(t) = 

[ : :22J 

It is required that c22(t) > 0 for all t. It follows that 

+ = 2(1 + al c22) x1 x2 + (2 a2 c22 + c22) xi 

This expression will be negative semidefinite if 

l+ac =0 
1 22 

(134) 

and 

. 
2 a2 c22 + c22 

-co (135) 
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I . ..-..a , ,..m ,.,., . - . . . . . .._. ..-,, . . . . . 

From Eq. (134) we obtain 

1 
‘22 = - al 

Substituting this in (135) yields 

2a2 ’ 
a1 < 0 -- +- 

al 2 

al 

Furthermore, the requirement that c22 (t) be positive for all t means that 

1 -- > 0 
al 

(136) 

(137a) 

(137b) 

From the stipulations imposed on C(t), we have 

lim [V(x)]-m 
II x II--- (138) 

We will now show that V + 0 along any solution of the given system other 
than the origin. In fact 

( 2a 
+= 2 al 2 -- +- 

al 
2 ) x2 

al 

which is zero only along the xl axis. But the slope of the system trajectory is 

d x2 al -= 
dX1 

x1 

x2 
+a 

2 

which is infinite for x2 = 0. Therefore the x1 axis cannot be a trajectory of the 
system. This proves the assertion. Invoking theorem 4 of Section 3.3.2, we may 
conclude that if the inequalities 

t1w 
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and 

(140) 
2a ’ 2 al --+ 
al 

--po 

al 

are satisfied, then the system is asymptotically stable in the large. 

A result of considerable interest for launch vehicle control systems can be 
derived from the above analysis. We take a simplified version of an autopilot-con- 
trolled space launch vehicle, whose geometry is depicted in Fig. 58, with the con- 
trol loop schematic as shownin Fig. 59. 

The symbols have the following meaning: 

I 

KA 

KR 

a 
C 

a 
a! 

L 
a 

S 

T 
C 

6 

8 

42 

% 

vehicle moment of inertia, slug-ft2 

servo amp. gain, N. D. 

rate gyro gain, set 

thrust moment arm, ft 

aerodynamic moment arm, ft 

aerodynamic load, lb/rad 

Laplace operator, set 
-1 

thrust, lb 

thrust angle 

pitch angle 

Tc a c/I 

La Jo/I 

All of the quantities T,, Lo, I, a,, and ao are lmown functions of time. From 
Fig. 59, we find (writing xi = 0) 

. 
=X x1 2 

. 
“2 = al (t) x1 + a2 (t) x 2 
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Figure 58. Geometry for Simplified Attitude Control System 

Figure 59. Control Loop for Simplified Attitude Control System 
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where 

a,(t) = p,(t) - KA p,(t) 

a2W = - KAKR P,(t) 

The foregoing analysis is directly applicable. We find, in fact, that the 
stability requirements are: 

2 KAKRpc ’ (KA cc, - p,) 

The first of these is the usual condition derived from linear stationary 
analysis. The second condition displays quantitatively the destabilizing influence 
of rapid increase in po! . 

3.4 ON-OFF CONTROLLERS 

One important class of nonlinear control systems is characterized by the 
fact that the nonlinear element switches discontinuously between extremes. These 
systems are variously called on-off, bang-bang, or relay type. They find wide appli- 
cation in such areas as roll control for boosters, attitude control for satellites and 
re-entry vehicles, etc. 

The use of phase plane methods is appropriate for the analysis of these 
systems, and the techniques of Section 3. 1 are directly applicable. However, there 
are many properties of on-off controllers which merit their study as a separate topic. 
This will be done in the present section. 

A very general type of on-off control system is shown in Fig. 60. The prop- 
erties of the relay are shown in Fig. 61. We will proceed to the analysis of this 
system from its simplest form, adding various complexities progressively and final- 
ly giving a solution for the complete system. In this way, the manner in which each 
of the system parameters (such as lead filter, time delay, dead zone, and hysteresis) 
affect the total performance will be made evident. 

3.4.1 Ideal Rela 

The simplest form of the system of Fig. 60 is with no lead filter or time 
delay and with no dead zone or hysteresis in the relay. In other words, 
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Figure 60. A General Form of On-Off Control System 

0 

---- 

M 

Figure 61. Relay Characteristics 
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T1= 7 = h = p = 0. We will also assume that there is no input; i.e., e, = 0. 
The system equation then takes the form* 

I? + M sgnr= 0 (141) 

and the initial conditions are 

f (0) = co 

C(O) = 6 
0 

When c > 0, Eq. (141) becomes 

Integrating once, we obtain 

‘=-I M (t - al) 

where 

I . 
al = iz Co 

Performing a second integration yields 

c - a 
2 

= - 2+ (t - alI2 

where 

Eliminating (t-al) between Eqs. (143 and (144) results in 

.2 2M 
c =- - 

I ( c - a21 

*sgnc = 1 if<>0 
= -1 if c < 0 

(142) 

(143) 

(149 

(145) 
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This equation represents the system trajectory in the phase plane. It is a parabola 
with vertex at Q = a2, d = 0, and focus at c = a2 - y, i = 0. When t: < 0, 
the motion is governed by 

Proceeding in the same manner as before, we find for the equation of the 
system trajectory in this case 

.2 
f = F (c- a,l) (146) 

where 

I = 
I 2: 

a2 Fo - 2M 

Eq. (146) represents a parabola similar to Eq. (145) but of opposite concavity. 

The complete trajectory of the system appears as shown in Fig. 62. It is 
merely a limit cycle whose amplitude depends on the initial conditions. 

3.4.2 Relay with Dead Zone 

If the relay has a dead zone of magnitude 2 ~1, then the trajectory (145) is 
valid as long as fl > cc. When - p < fl < ~1, M = 0, and the trajectory in the 
phase plane is described by z = a,, where {I is the value of i at point @ in Fig. 
63. Since at this time c = 61 t + c 1, it is inferred that c increases for positive 
i I and vice versa. There is now no difficulty in completing the phase plane repre- 
sentation for this case as shown in Fig. 63. Again the magnitude of the limit cycle 
depends on the initial conditions. 

3.4.3 Ideal Relay with Lead Circuit 

Inthiscase, p =h = T = 0, and T1 is finite. We have 

f = Msgn(TI < + c) 

Consequently, when (Ti < + c ) is positive, the motion follows Eq. (145). M changes 
sign when 

TI< + c = 0 
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Figure 62. Phase Portrait for Ideal Relay Control System 

Figure 63. Phase Portrait Showing Influence of Dead Zone 
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after which the motion proceeds as per Eq. (146). In this way, the phase plane 
trajectory of Fig. 64 is constructed. When the trajectory reaches point @ in 
this diagram, an ambiguity arises. The motion tends to continue in that portion 
of the phase plane to the right of the switching line. However the tangent to the 
trajectory parabola has a slope whose magnitude is less than that of the switching 
line. The parabola representing motion to the right of the switching line appears 
to the left of the switching line. This is shown by the dotted portion in Fig. 64. 
There is apparently no way to describe the motion beyond this point (which is obvious- 
ly not a point of equilibrium). This paradox is, in fact, a result of the assumption of 
a perfect relay, where it is implicitly assumed that changes of state may take place 
at infinite speed. By introducing a small time lag, it may be shown that the tra- 
jectory converges to the origin exhibiting the well known high frequency, low ampli- 
tude oscillrrtion (chatter). This will be done in the next section. 

Figure 64. Phase Portrait Showing Effect of Lead Circuit 
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3.4.4 Relay with Lead Circuit and Time Delay 

The situation to be considered here is the same as that in the previous 
section but with the addition of a finite time delay, 7. To construct the phase plane 
portrait for this case, we need to develop the equations of the “delayed” switching 
lines. 

Eq. (147) gives the ideal switching line when 7 = 0. However, when 7 is 
finite, actual switching occurs at some later time; Let time, tl, denote the time 
corresponding to ideal switching and write 

F1 = Wl) (148) 

. 
% = qt,) (149) 

We may determine tl as follows. From Eqs. (144) and (143)* 

M 
Cl = t2 

-21 1 + c 
0 

. M 
Cl = - r tl 

Since these values of cl and k1 must satisfy (147), we find 

t 1 =-Tl+j/m 

(150) 

(151) 

(152) 

The positive sign is used in front of the radical since tl is positive. Now the time 
at which actual switching occurs is given by 

t2 = t1 + T (153) 

We write 

* For simplicity we have assumed that 1, = 0. 
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Substituting in Eq. (150) 

Using the value of tl given by Eq. (152), we find 

From Eq. (151) 

M =-A 
I 

Using Eq. (154) this becomes 

. 1 
‘2 = (T -7) 

1 
‘2 + z (2 T1 - 7) 1 

(154) 

(155) 

Eq. (155) represents the delayed switching line when M changes sign from 
positive to negative. To obtain the equation for the delayed switching line when M 
changes sign from negative to positive, we proceed in identical fashion using Eq. 
(146) instead of Eq. (145) to obtain an equation analogous to Eq. (150). The proce- 
dure is otherwise the same. We obtain finally 

. 1 
‘2 = (Tl - r ) ‘2 - s WI-7) 1 (156) 
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Fig. 65 depicts the character of the phase plane trajectory for this case. 
We have indicated by al and I2 the delayed switching lines corresponding to Eqs. 
(155) and (156) respectively. The case shown is typical for the condition, T1 B T. 
When r is on the same order of magnitude as Tl, a limit cycle of the form shown in 
Fig. 66 is produced. 

3.4.5 Relay with Dead Zone and Hysteresis 

The characteristics of the relay were shown in Fig. 61, and we assume 
that the lead time constant is finite. For the present we assume that T = 0. 

Let (Tl 6 + c) be positive and decreasing. Then the motion follows Eq. 
(144). When 

T1i + F = p (157) 

f switches to zero and the trajectory is described by < = <I, where tl is the time 
at which the switching occurs. When 

TIP + c = -h (158) 

f switches to -M. Continuing in this way, we construct the phase plane portrait of 
Fig. 67. Here, lines al and 13 represent the switching lines (157) and (158) res- 
pet tively . 

Using the approach developed in the previous section it is now a straight- 
forward procedure to include the effect of finite delay, 7. Fig. 68 shows the con- 
struction of the phase plane portrait, and Fig. 69 depicts the terminal limit cycle 
for this case. 

3.5 THE POPOV METHOD 

For many years, most of the research studies in the area of nonlinear con- 
trols have been concerned with extending the basic ideas of the Lyapunov theory and 
fitting it to the needs of modern automatic control systems. In Section 3.3, we sum- 
marized some of the salient features of the current state of the theory. As already 
noted, one of the chief problems in practical application is the discouragingly com- 
plex algebraic manipulations required when the order of the system being analyzed 
is moderately high. 
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Figure 65. Limit Cycle Produced by Small Time Lag 
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Figure 66. Limit Cycle Produced by Large Time Lag 

148 



Figure 67. Phase Portrait for Relay with Dead Zone and Hysteresis 

Delayed 
switching 

lines 

Figure 68. Construction of Phase Portrait for Relay with Dead Zone, 
Hysteresis and Pure Time Lag 
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Slope = - 
Tl - 7 

Figure 69. Final Limit Cycle Resulting from Construction of Figure 68 

In what is apparently one of the first papers to leave the Lyapunov “fold” 
in studying nonlinear systems, Popov( 36) derived stability criteria in terms of 
frequency response. He considered systems which contain a linear part and one 
nonlinear element subject to rather mild restrictions. His results are otherwise 
very general. 

The chief virtue in the stability criteria developed by Popov is that useful 
resuits are easy to obtain even for high order systems. Using a computer, one may 
analyze systems of up to twentieth order -- much in the same way as linear systems. 

In general, the systems which may be analyzed using the Popov method 
encompass a much broader spectrum than those in the Lur ‘e method. While they 
are not as completely general as the Lyapunov theory, they are nevertheless of 
much greater utility in the areas where they apply. 

The system to be considered is described by Eqs. (92) which are repeated 
here for reference. 

k = Ax + b(/)(u) (159) 

a = vTx (160) 
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It is assumed that all the eigenvalues of the constant matrix, A, have 
negative real parts. This restriction will be relaxed in later sections. Further- 
more, (o (a) is a continuous scalar function satisfying the condition 

0 < f@(u) =?k 
cr (161) 

In what follows, we shall need an explicit expression for the transfer func- 
tion of the linear portions of Eqs. (159) and (160). This may be derived as follows. 
Taking the Laplace transform of Eq. (159) yields 

s x(s) = Ax(s) + bcp(s) 

or 

x(s) = (Is - A) -1 
W(s) 

Using Eq. (160), u = vTx 

G(s) 3 - - = -VT (I u(s) 
cp@) 

s - A):l b (162) 

Popov’s result is stated in the following theorem. 

Theorem: If, in the system described by Eqs. (159) and (160), the following condi- 
tions are satisfied: 

a. All the eigenvalues of A have negative real parts. 

b. 0 < cp(u) “<k 
0 

C. There exists a nonnegative real number q such,that* 

Re I(1 +jqw) G(jw)] + $ > 0 

for all w > 0, where G is defined by Eq. (162). 

Then the origin, x = 0, is asymptotically stable in the large. ** 

(163) 

*The symbol, Re [ ] denotes “real part of” 
**Also called complete or absolute stability. 
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The inequality (163) may be expressed in several simplified forms. Since 
the linear transfer function may be written in general as the ratio of two polynom- 
ials in s; viz. 

G(s) = E!a 
Q(s) 

we have 

G(j W) = 
P1 (~4 + j P2 (~4 

Q1 04 + j Q2 W 

where the subscripts 1 and 2 are used to denote real and imaginary parts, respec- 
tively. This reduces to 

G(~u) = Gl (w) + j G2 0.d (164) 

where 

p1 Ql 2 2 +P Q 
G1 = 

Q; + Q; 

G2 = 
p2 Ql - p1 &2 

Q; + Q; 

(165) 

(166) 

As a result, the inequality (163) becomes 

G1 (W) - qW G2 (W) + k L-0 (167) 

Further manipulations are possible in order to analyze complex high order systems 
in a rather routine fashion. A discussion of these will be deferred in order to show 
the application of the results presented thus far in two simple examples. 

Example 16: We consider a second order version of (159) and (160) with 

A= 
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- 

b= 

-1 
v = 

[I 0 

A direct application of Eq. (162) yields 

G(s) = 
s +3 

2 
S + 7s +10 

Fig. 70 is a schematic of this system. We seek to establish an upper limit on k in 

0<56(0)qk 
U 

which ensures complete stability of the system. From Eqs. (165) and (166) we find 

4&J2 + 30 

G1 = w4 + 29 w2 + 100 

G= 4 
-U(W2 + 11) 

2 2 
w + 29w + 100 

Substituting in (167) 

4 cd2 + 30 + qw2 (Lo2 ; (cd4 
2 

+ 11) + + 29w + 100) > 0 

We see that this inequality is satisfied for all o > 0, for any nonnegative q, and 
O<k<=. Consequently this system is completely stable as long as the non- 
linear function is restricted to the first and third quadrants. 
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7 -1 
(5 

b NL s+3 

s2 + 7 s + 10 
1 

Figure 70. Control Loop for Example 16 

Example 17: Consider a third order version of (159) and (160) where 

1 0 

0 1 

-29 -10 1 
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For third and higher order systems, the matrix inversion to be performed in Eq. 
(162) becomes extremely awkward, and for all practical purposes impossible, for 
only moderately high order systems. The essential difficulty stems from the need 
to carry polynomials in 8 through the maze of the inversion process. We may cir- 
cumvent this predicament by first expressing the given system in canonical form in 
the manner described in Section 3.3.3. Thus by writing 

x = Ty 

where T is the Vandermonde matrix given by Eq. (95)) we have in the present case 

x1 = -1 

x2 = -4 

A, = -5 

T = 

1 1 

-4 -5 

16 25 1 
-20 

-1 “J’ z-h 20 

-12 

-9 

24 

-15 

and we find 

jr = Fy + mcp 

u = cTy 

where 

F=[: -4 9] 

-1 

4 

-3 1 
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1 

m = T-lb = l$ -4 [I 3 

Since (Is - F) is now a diagonal matrix, the inversion is trivial, and we find from 
Eq. (162) 

G(s) = - c T(I -‘rn s - F) 

1 
= (8 + 1) (s + 4) (s + 5) 

From Eqs. (165) and (166) 

G1 = 20 (1 - w2) 
[ 

-1 
400 (1 - t.d2,2 + Lo2 (29 - u2)2 3 

C 
-1 

G2 = - w (29 - w2) 400 (1 - w2)2 + a2 (29 - w2)2 1 
Substituting in (167), we obtain after some reduction 

if!+ ($2 -,)&t +(+ +29,-20) w2 +(y +2+ 0 

As in Example 16, we seek to determine an upper limit on k for which the 
system is completely stable. This k is obviously dependent on the choice of q. If 
q = 0, then the above inequality reduces to k < g , A brief inspection of the 

above inequality indicates however that an optimum upper limit for k may be obtain- 
edbytakmgq = 7 , in which case we find k < 498. 

It is instructive to compare this value with that for the corresponding lin- 
ear system obtained by replacing cp (u ) with cp = ku . This situation is depicted 
in Fig. 71, with its root locus shown in Fig. 72. Via conventional linear techniques 
we find that neutral stability occurs for k = 560. 
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(8 + l)(s + 4)(s + 5) 

Figure 71. Linearized Version for System of Example 17 

Im 

k = 560 

\ Y -- w= m 

Figure 72. Root Locus for System of Figure 71 
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In the two examples here considered, it was easy to choose the parameter, 
q, such that we obtained the maximum upper bound on k for the system to be stable. 

For systems of higher order, a somewhat greater effort is necessary to 
do this but the procedure is still relatively straightforward. To aid in doing this, 
the inequality (167) is manipulated a little further. We define 

U = GI(w) (168) 

w= - “G2 (4) (169) 

The inequality (167) may therefore be written as 

u+qw+; > 0 

q$O, k>O 

(170) 

If we replace the inequality in (170) by an equal sign, 

u+qw+$o (171) 

Then it is easy to show that (170) represents those points in the U - W plane which 
are to the right of the line (171). 

The procedure now consists of making a plot of G(j u) in the U - W plane 
forOe 0 c 0~. Popo~(~~) calls this the “modified phase amplitude charac- 
teristic” (MPAC). The line (171) is now fitted to this curve such that the curve 
remains wholly to the right of the line while the abscissa -i is made as small as 
possible, Fig. 73 illustrates the method for a typical G(j w) locus. 

It is apparent that the usefulness of the method is not seriously compromis- 
ed by taking systems of arbitrarily high order. The limiting factor is computer 
time and storage, much the same as for linear system analysis. 

In the remaining sections devoted to the Popov method, we will relax var- 
ious restrictions and discuss some generalizations. 

3.5.1 Singular Cases 

In the discussion of the Popov method presented in the previous section, it 
was specifically stipulated that the eigenvalues of the system matrix must have neg- 
aative real parts. Those cases in which the system matrix had simple or multiple 
eigenvalues on the imaginary axis were referred to by Popov as singular. Some of 
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for typical G (jw) 

Figure 73. A Typical MPAC Locus Showing Determination of Stability Boundary 
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these singular cases have been analyzed by Popo~(~~) and Yakubovitch (41). How- 
ever, a simple and elegant result has been obtained by Aizerman and Gantmacher (39) 
which includes the results obtained by these previous investigators as special cases. 

We consider again the system described by Eqs. (159) and (160). The ma- 
trix, A, is permitted to have simple or multiple eigenvalues on the imaginary axis. 
However, instead of (161)) the nonlinearity is assumed to satisfy 

(172) 

where F is an arbitrarily small positive number. * The basic result is the following. 
If 

a. Inequality (172) is satisfied. 

b. The linear system obtained by substituting Q = f u is stable. 

c. There is a real, nonnegative number q such that 

Re [(l + jwq) G (j w)] + i > 0 

holds for all w > 0. 

Then the origin x = 0 of the system is completely stable. 

Further analysis proceeds in a manner completely analogous to that des- 
cribed in the previous section. 

3.5.2 Forced Systems 

In all the systems considered thus far, there were no external forces 
applied. As a matter of fact, there are very few results available on the stability 
of nonlinear systems excited by external forces. Consequently a recent study by 
Naumov and Tsypkin (40) which adopts the Popov approach in the case where there 
are externally applied forces is especially &gnificant. The results obtained are 
also characterized by a greater generality in that the restrictions on the linear 
portion of the system are greatly relaxed. 

*Essentially this means that the slope of the nonlinearity is not permitted to be 
zero at the origin in the u - Q plane. 
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The criteria developed by Naumov and Tsypkin may be presented in a 
fairly simple manner, and this will be the subject of the present section. The sys- 
tem to be considered is of the form shown in Fig. 74. The basic result is contained 
in the following theorem. 

Theorem: The system of Fig. 74 is completely stable if the following conditions are 
satisfied. 

a. The applied force f(t) is bounded; that is, lim.f(t) < 0 . 
t-m 

b. There exists a nonnegative number, r, such that 

GUw) - 1 
+ k-r 9 0 

forallw > 0. 

C. r+c 2 dQ(u) “< k _ E 
do 

(173) 

(174) 

where c is an arbitrarily small positive number, and k is a positive 
constant which satisfies (17 3). 

Note that the poles of G(s) are not restricted to lie in the left half plane. This 
constitutes a significant generalization over the results given in the previous two 
set tions . 

In the case where all the poles of G(s) do lie in the left half plane, then we 
may take r = 0. A further notable difference between the forced and unforced 
systems, is that the stability criteria for the former involve the derivative of the 
nonlinear element rather than the function itself. 

For purposes of practical application, the condition (173) may be manipu- 
lated to a form in which frequency response techniques may be employed in a famil- 
iar manner. Defining a constant, B = JL , we may write (173) as 

r 

1 1 
+B-l 

PO 

o=? o< = 

Now let 

kGUw) = M(W) +jN(o) 

(175) 

(176) 

161 



Figure 74. Nonlinear System with Forcing Function 

Substituting this in (175) and replacing the inequality by an equal sign, we find 

[M(w) + $ (B+1)12 +N2(w) =f (B - I)2 (177) 

It is easy to show that this defines a family of circles passing through the 
point, (-1; j0) , having a radius i (B - I), and situated to the left of the line, M( U) = 
-1. (See Fig. 75.) Via simple geometric arguments it may be established that in- 
equality (175) is satisfied outside the B circles. 

Thus for any given k, if the k G(j w) locus in the M - N plane is found to be 
tangent to a certain B circle, say BI, this determines a value of r, which in turn 
defines the limits for dQ (u )/do in order to ensure complete stability. The pro- 
cedure is suggestive of the use of compensating filters to shape the k G(j w) locus 
in the vicinity of the B circles in order to enhance the stability properties of the 
system. Conventional linear techniques are appropriate for this purpose. 
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Figure 75. B Circles for Eq. (177) 
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